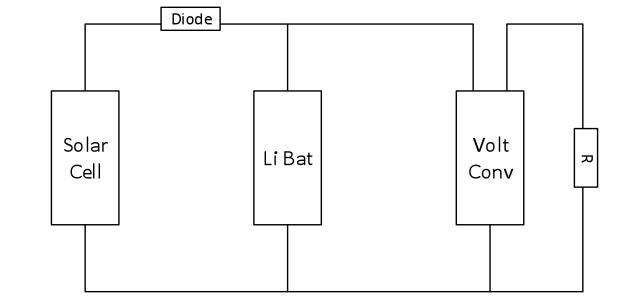
Lecture 3

Resistance; Measuring Your DMM; Diodes

Copyright © 2015 by Mark Horowitz

Reading For This Lecture:

• A&L 16.1-16.3 – Diodes


OR

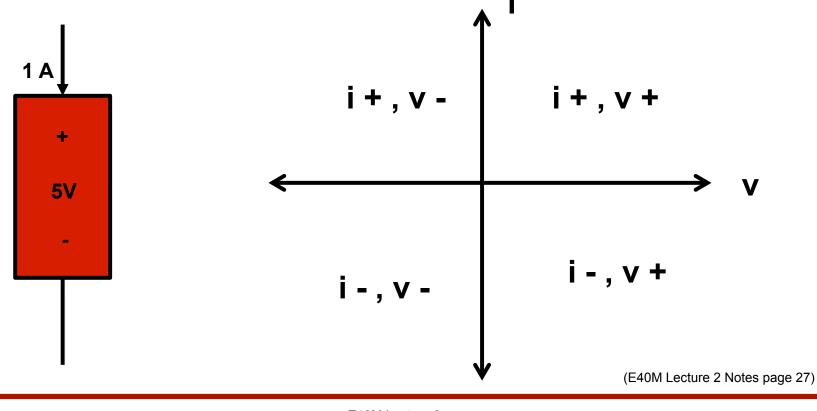
• Chapter 2 of the course reader

If you want to look at a different take, you can look at:

- Diodes:
 - <u>https://learn.sparkfun.com/tutorials/diodes</u>
 - <u>http://www.allaboutcircuits.com/vol_3/chpt_3/1.html</u>

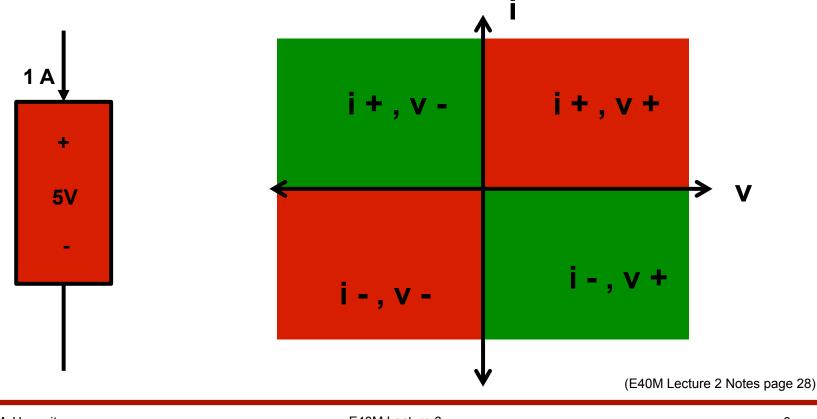
Roadmap

Today's Topics:

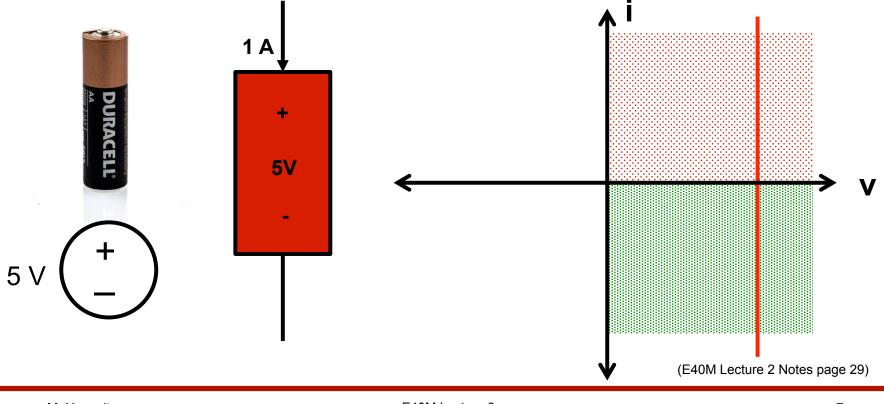

- 1. Current sources, voltage sources, resistor characteristics.
- 2. Two new devices current sources and diodes.
- 3. How our DMM really works.
- 4. Soldering fundamentals.

- Sum of current into a device or a **node** is always 0 (KCL)
- Sum of voltage drop across any loop of devices is always 0 (KVL)
- Calculating the **power** used by a device or circuit = I*V
- The characteristics of **resistor** (type of device) V = iR, Ohms Law
- Be able to use your **DMM**
- The next few slides are from the last set of lecture notes since we didn't cover them last time in class.

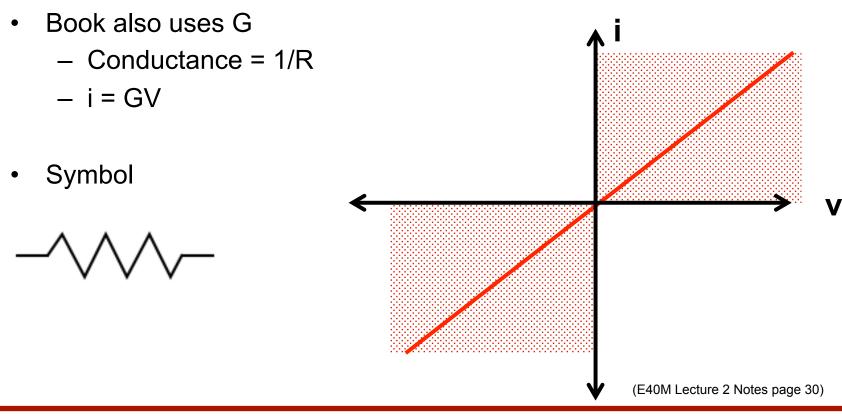
M. Horowitz


Device Models

- It's useful to represent what a "device" does by plotting its characteristics on a plot of i vs. V.
- i is the current through the device, V is the voltage across the device.


Device Models

• Note that the energy is dissipated by the device in quadrants 1 and 3, and power is generated by the device in quadrants 2 and 4.


Device Models – Battery, Voltage Source

- A battery or a voltage source provide a fixed out put voltage no matter what current they are asked to provide or consume ("sink").
- In quadrant 1 energy is consumed, in quadrant 4 energy is provided.
- Quadrant 1 = battery charging, quadrant 4 = battery discharging.

Device Models – Resistors

- Current is proportional to voltage
 - V=iR Ohm's Law

Why Does Resistance Exist (What Physical Effect Does it Model)

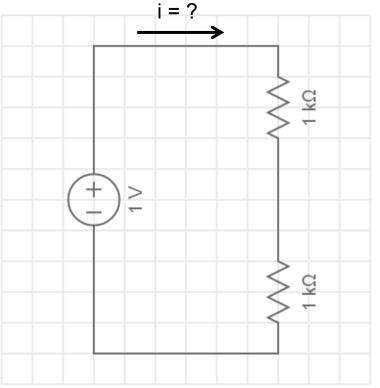
- Conductors are not perfect
 - They use a little energy to get current to flow through a wire¹
- Since the energy flow into the wire is (i ΔV)
 - There must be a voltage drop along the wire
 - Generally this drop is proportional to the current
 - V = k * i
 - Call the constant of proportionality, Resistance
- Make resistors by using material that doesn't conduct well

¹Well except for superconductors which are magical. They have interesting properties, like current can flow in a loop forever! And this is used in MRI machines to make large magnetic fields. (E40M Lecture 2 Notes page 31)

M. Horowitz

Resistors

http://ecee.colorado.edu/~mathys/ecen1400/labs/resistors.html

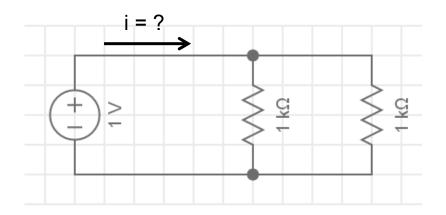


http://www.instructables.com/id/Reading-Surface-Mount-Resistor-codes/

(E40M Lecture 2 Notes page 32)

Resistance Problem #1

What current flows in the loop?



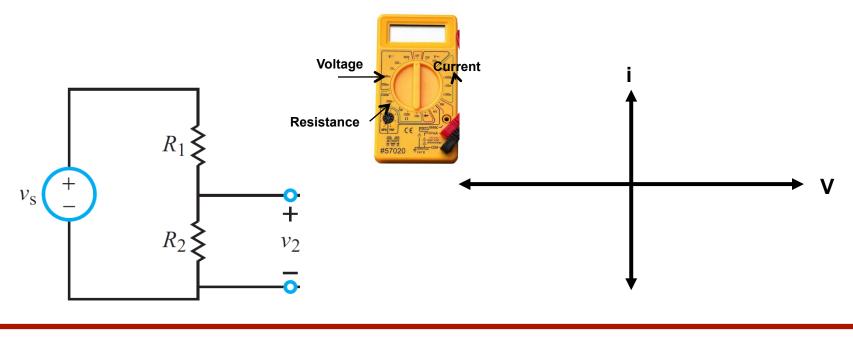
What is the voltage across the bottom resistor?

(E40M Lecture 2 Notes page 33)

Resistance Problem #2

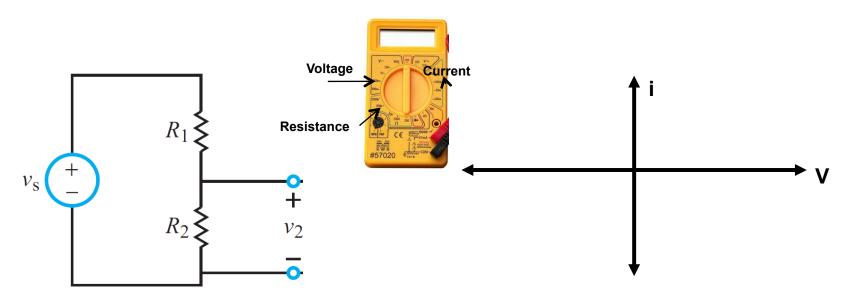
What is the current i?

(E40M Lecture 2 Notes page 34)


Learning Objectives For Today

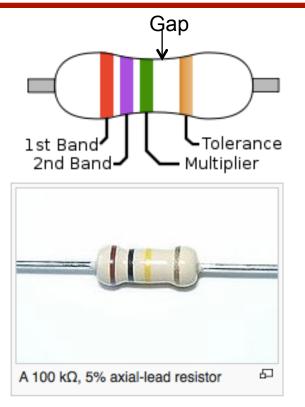
- Understand the device i-V curve of a current source
- Understand the operation of a diode, and its symbol
- Be comfortable using your DMM to measure voltage and current
- Be prepared to solder next week in lab

MEASURING W/ DMM


How to Measure Voltage

- Set DMM on a voltage scale
- Remember an ideal voltage meter takes no current
 - Its iV curve is a line on the x-axis (i = 0)
- Put meter in parallel with the device you want to measure
 - Devices in parallel have the same voltage

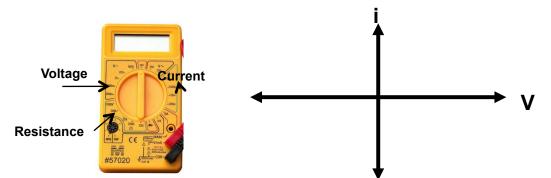
How to Measure Current


- Set DMM on a current scale
- Remember an idea current meter has no voltage drop
 - Its iV curve is a line on the y-axis (V=0)
- Put meter in series with the current you want to measure
 - Devices in series must have the same current flow

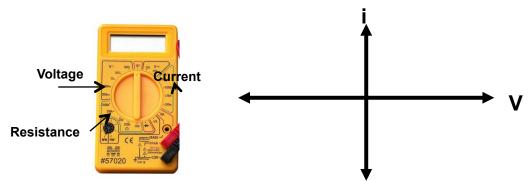
- Do NOT put the current meter in parallel with the device
 - This "shorts" out (creates a low resistance path) the device
 - And might damage your meter
 - Never put the DMM in current mode across your battery
- Do not put the voltage meter in series in your circuit
 - Since this basically breaks the circuit's connection
 - But it won't damage your meter
- Do not leave your DMM on
 - It will run out the battery, and you will need to buy another
 - It uses a standard 9V battery

IN CLASS ACTIVITY

Measuring/Reading Resistors

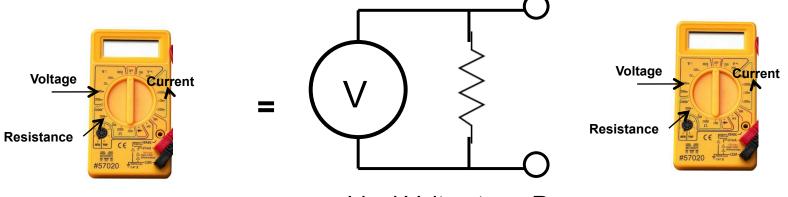


- Measure a resistor
 - Does it match the value printed on it?


Color	First Digit	Second Digit	Third Digit 1% Resistors	Multiplier	Tolerance
Black	0	0	0	1	
Brown	1	1	1	10	±1%
Red	2	2	2	100	±2%
Orange	3	3	3	1000 (=1k)	
Yellow	4	4	4	10k	
Green	5	5	5	100k	
Blue	6	6	6	1000k (=1M)	
Violet	7	7	7	10M	
Gray	8	8	8	100M	
White	9	9	9	1000M (=1G)	
Gold				0.1	±5%
Silver				0.01	±10%

Your DMM is not Ideal (Pre Lab)

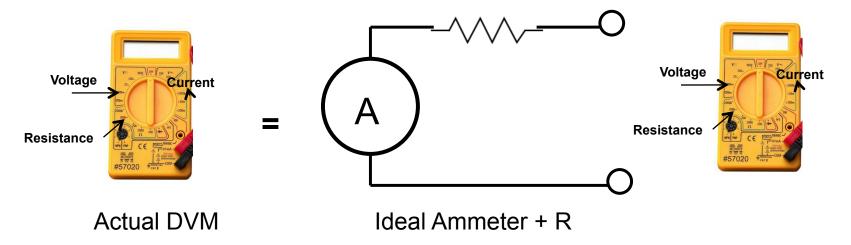
• An ideal voltage meter takes how much power? Why?


• An ideal current meter takes how much power? Why?

- A real DMM needs to take some power to operate
 - Therefore real DMMs are not ideal

Real Voltage Meter

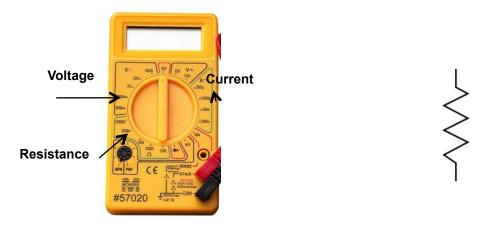
- Takes some input current
 - Modeled by a resistor in parallel with ideal voltage meter


Actual DMM

Ideal Voltmeter + R

- Work with a partner. Set one DMM to measure voltage. Use a second DMM to measure the resistance of the first DMM.
- Different groups should try different voltage scales.
- What resistance do you measure?
- Does the voltmeter you're measuring read anything?

Real Current Meter


- Real voltage meters drop a little voltage
 - Modeled by a resistor in series with an ideal current meter

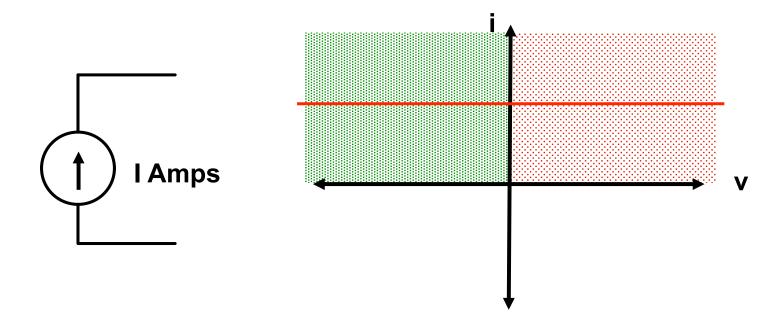
- Work with a partner. Set one DMM to measure current. Use the 20mA scale. Use a second DMM to measure the resistance of the first DMM.
- What resistance did you measure?
- Does the ammeter display anything?

How Does the DMM Measure Resistance?

- The device doesn't generate any energy
 - There is no energy flow for the DMM to measure, unless ...
- How can we tell what it does?

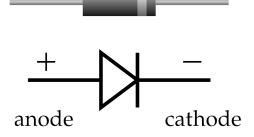
 This is part of your prelab for next week. Hint – look at the last two slides when we were measuring resistance. The DMM we were measuring also displayed a value.

M. Horowitz


Care and Feeding of you Batteries

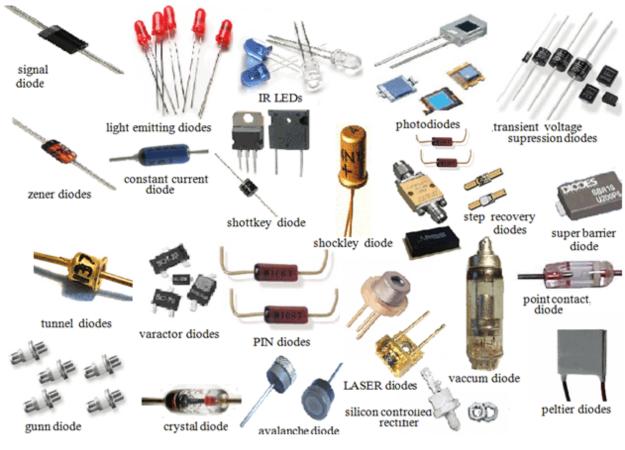
- Please do not leave your AA batteries in the battery holders
 The leads of the battery holder can connect by accident
- Also make sure the leads of your LiPo (lithium ion polymer) battery don't connect.
- Why?
 - All wire has some small resistance
 - Power = $iV = V^2/R$
 - Small R implies high power
 - Many battery holders melted last year

DEVICES: CURRENT SOURCE; DIODE


Current Source

• Current is constant, independent of voltage

New Element – **Diode**


- Diode is a one-way street for current
 - Current can flow in only one direction
- An idea diode
 - If the current is positive
 - Voltage drop is zero independent of current
 - Looks like a wire (short circuit)
 - If the voltage is negative
 - · Current is always zero independent of voltage
 - · Looks like the device is not there (open circuit)
- The plus end of the diode is called the anode

- The minus end of the diode is called the cathode

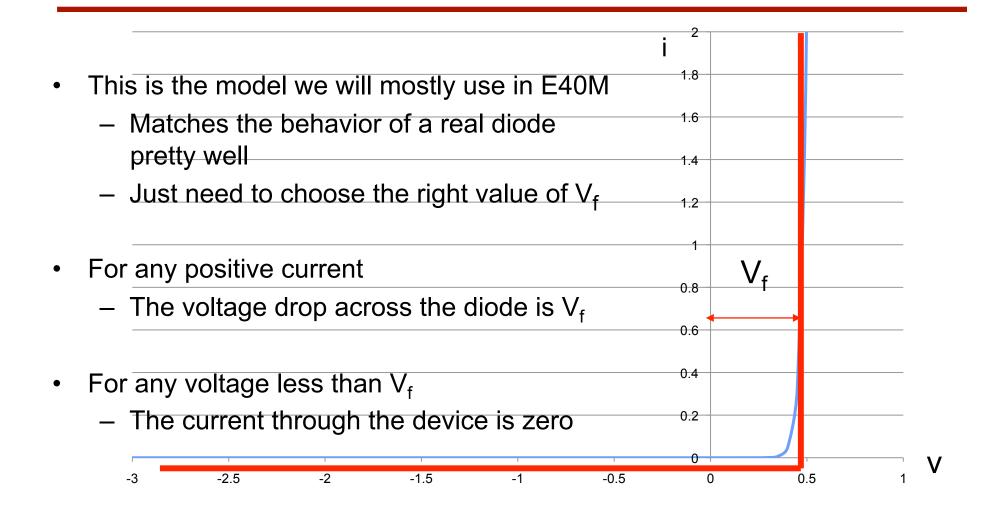
ν

There Are Many Types of Diodes

Types of Diode

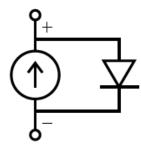
http://www.instructables.com/id/Types-of-Diodes/

Real Diodes


- Do conduct current in only one direction
 - But they have some forward voltage drop
 - And their voltage does increase with current, but
- Their voltage is logarithmic on current
 - Current is exponential on voltage!
 - So the voltage is not very dependent on current level
- Their drop depends on the type of diode
 - Schottky diodes are around .3V
 - Normal silicon PN diodes are generally around .6V
 - Other semiconductor materials have larger voltages

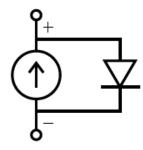
 $I = I_{o} \exp\left(\frac{qV}{kT}\right)$

Diode iv


Idealized Diode iv

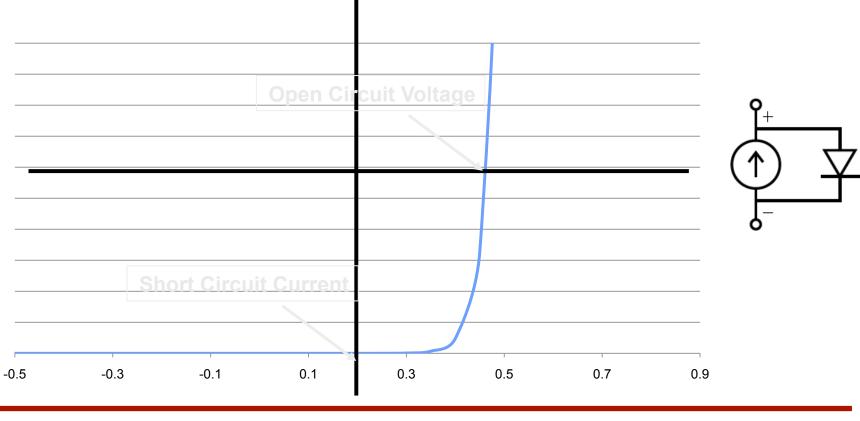
Some Diodes Are Light Sensitive

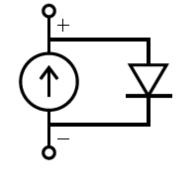
- These diodes are called **solar cells**
- When you shine light on the cell
 - The light generates a current which runs in parallel to the diode
 - The value of the current is proportional to the light
- This generates electrical energy
 - Actually converts energy in the light to electrical form


• More on this next week.

SOLAR CELL

Some Diodes Are Light Sensitive

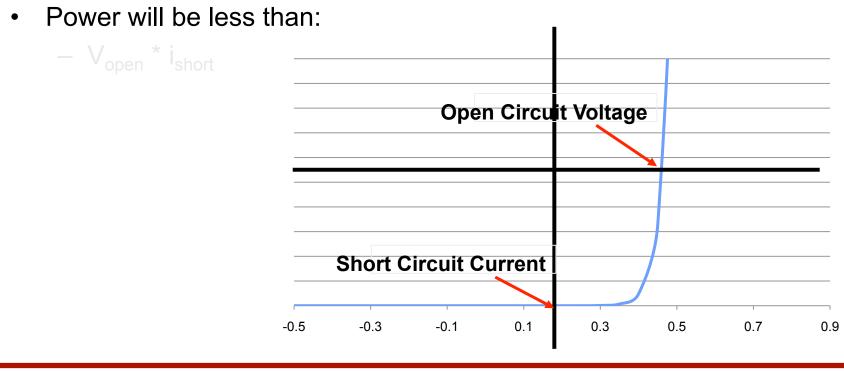

- These diodes are called solar cells
- When you shine light on the cell
 - The light generates a current which runs in parallel to the diode
 - The value of the current is proportional to the light
- This generates electrical energy
 - Actually converts energy in the light to electrical form


Photo Generated Current

- Using standard reference direction for current
 - What does the i-V curve look like when light is shining?

What Sets the Open Source Voltage and the Short Circuit Current?

- If there is no path for current (open source voltage case)
 - It will flow into the diode which increases its voltage
 - Why the voltage increases in this case will be explained in a few weeks
 - As the voltage across the diode increases
 - The diode will eventually turn on
 - Now the current can flow in diode

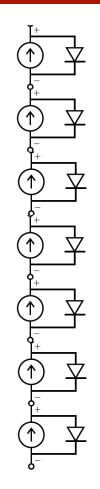


- If you short the diode out (short circuit current)
 - You measure all the optically generated current

Extracting Power from a Diode

• Power is iV

- So in neither of these cases we get power from diode


Solar Cell was Spec'd 6V and 1W

• What did you measure?

- How did they get a diode with such a large voltage?
 - They didn't, look closely at the solar cell

Generating Enough Voltage

- There is one weak point for solar cells
 - Each cell provides < 0.5V</p>
 - We need around 5V, bought 6V cells
- To get this voltage put cells in series
 - But this puts the currents sources in series
 - If one of the cells doesn't see light
 - Its current goes to zero
 - What happens to the current through the stack?
 - Try it out on your cell (use you finger)
- This happens in commercial cells too
 - Solar panels produce 40V

Prelab To Do This Weekend

- Wait for a bright sunny day
- Take your solar cell
 - Clip alligator leads to it
 - Go outside and hold it to the sun
 - Try to cast the largest shadow
 - Measure the short circuit current
 - Put the DMM in current mode across the solar cell
 - Measure the open circuit voltage
 - Put the DMM in voltage mode across the solar cell
- We will talk about the results on Monday

Learning Objectives for Today

- Understand the device i-V curve of a resistor
- Understand the device i-V curve of a current source
- Understand the operation of a diode, and its symbol
- Be comfortable using your DMM to measure voltage and current
- Be prepared to solder next week in lab