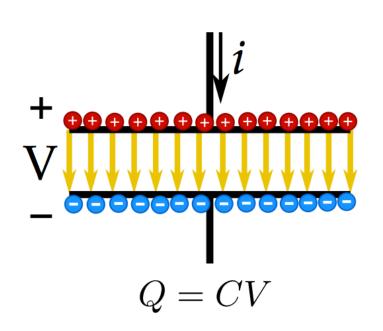
Lecture 7

Capacitance

Copyright © 2015 by Mark Horowitz

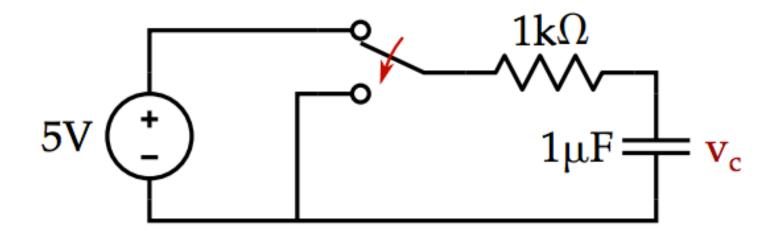
Roadmap


In the last lecture we showed how we can represent a voltage waveform that changes in time another way – as a sum of tones (sinewaves). This representation contains the same information, just stored in a different way. These two representations are called transforms of each other.

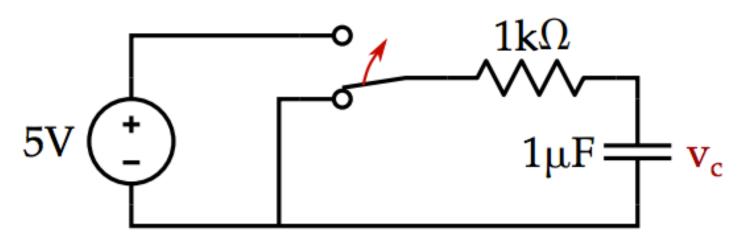
This lecture will show you why this alternative representation is so useful. If you can represent an input as a sum of sinewaves, then it is very easy to compute the output of a circuit with resistors and capacitors. To show how this is done, we will introduce the concept of **impedance**, which is a generalization of resistance. Using impedance we can then estimate how the gain of circuit can change with frequency, creating **filters**, and how the response of these filters are graphed in a **Bode plot**.

CAPACITORS

Capacitors


- Rather than relating i and V
 - Q = CV
 - Q in Coulombs
 - V in Volts
 - C in Farads
- Charge neutral
 - +Q on one lead
 - -Q on the other lead

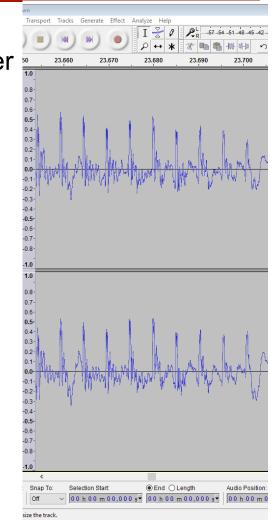
iV for a Capacitor


- How do we relate I and V though?
 - Q=CV
 - I = dQ/dt
 - dQ/dt = d(CV)/dt
- I = C dV/dt
- Current = Rate of Voltage Change * Capacitance
 - If current is small, voltage changes a little bit
 - If current is large, voltage changes a lot

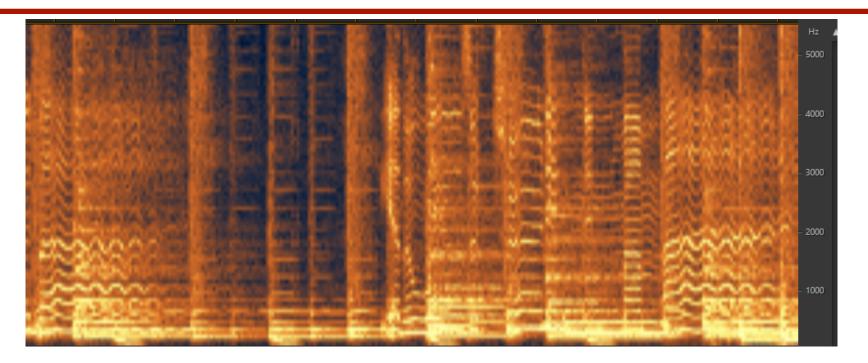
Capacitor Energy (Charging) – RC Circuit

- Assume Vc=0 at t=0
- At t=0, switch flips up
- Plot Vc vs t

Capacitor Energy (Discharging) – RC Circuit



- Assume Vc=5V at t=0
- At t=0, switch flips down
- Plot Vc vs t


PREVIOUSLY IN E40M

Natural Way To Represent Sound

- We create pressure waves by moving a speaker
 - Larger voltage causes more deflection
- Sound both pushes and pulls the speaker cone
 Voltages are both + and –
- Represent sound by voltage vs. time
- On computers
 - Sample voltage at 44K/sec
 - Digitize the voltage
 - Into 15 bit integer (signed)
 - Raw = .wav; compressed .mp3

Viewed In Terms of Sine-waves

- So you can take the music and look sinewaves in a block of time
 - Then repeat that for another block of time
 - This analysis plots frequency vs. time a spectrogram

Formal Definition

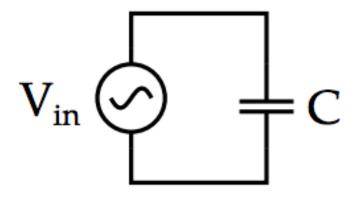
•

- Assuming a signal repeats every T seconds
 - Or we just have T seconds of data to look at ...

$$v(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2n\pi t}{T} + b_n \sin \frac{2n\pi t}{T} \right)$$

- The term with n=1 is called the fundamental term
 - It is the lowest frequency that exist in a period of T
 - The other terms are called harmonics
 - They are integer multiples of the fundamental frequency $2\pi/T$

IMPEDANCE


Impedance

- •
- Ratio of the sine wave voltage across the device
 - To the sine wave current through the device
- For resistors
 - This is just the resistance, and doesn't depend on freq.
- For capacitors
 - This is a well defined quantity

$$\mathsf{Z} = \frac{1}{2\pi F \, C}$$

• Which depends on the frequency of the sine wave

What happens when we put sine waves into a Capacitor?

- Vin = sin($2\pi f t$)
- Ic = C dVin/dt
- Ic = C 2πf cos(2πf t)
- $|Z| = Vin/Ic = 1/(2\pi f C)$