Control of Manufacturing Processes

David Hardt

November 2, 2015

Topics for Today

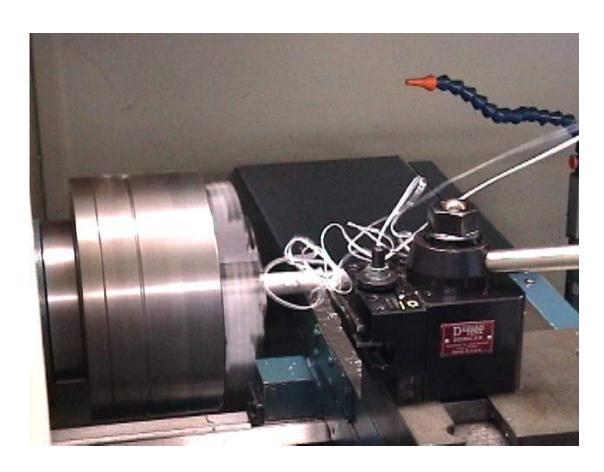
- Physical Origins of Variation
 - Process Sensitivities
- Statistical Models and Interpretation
 - Process as a Random Variable(s)
 - Diagnosis of Problems
- Shewhart Charts
- Process Capability
- Next Steps: Optimization and Control

Process Objectives?

- Rate
- Quality
- Cost
- Flexibility

Process Control Objectives?

- Rate
- Quality
 - Conformance to Specifications wrt
 - Geometry
 - Properties
- Cost
- Flexibility



CNC Turning

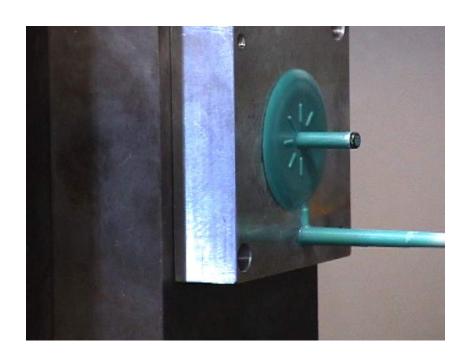
Critical Dimension:

Shaft Diameter

Brake Bending

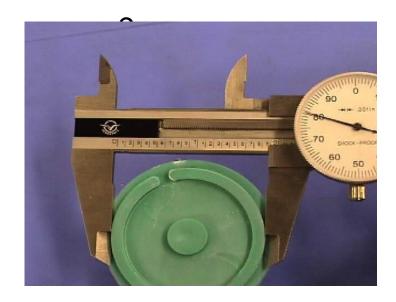
Critical Dimension:

Part Angle



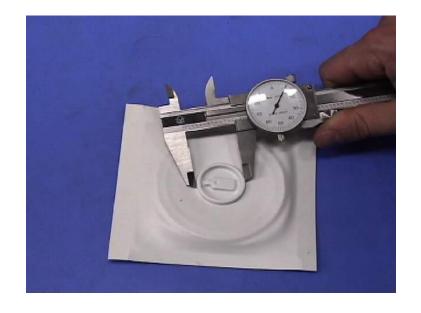
Injection Molding

Critical Dimension:



Thermoforming

Critical Dimension:



Other Related Problems: Cost, Rate and Flexibility:

- 100% inspection with high scrap rates
 - low throughput
 - high costs
- 100% Inspection with frequent rework
 - low throughput
 - high costs
- High Variability at changeover
 - Reluctance to changeover
 - low flexibility

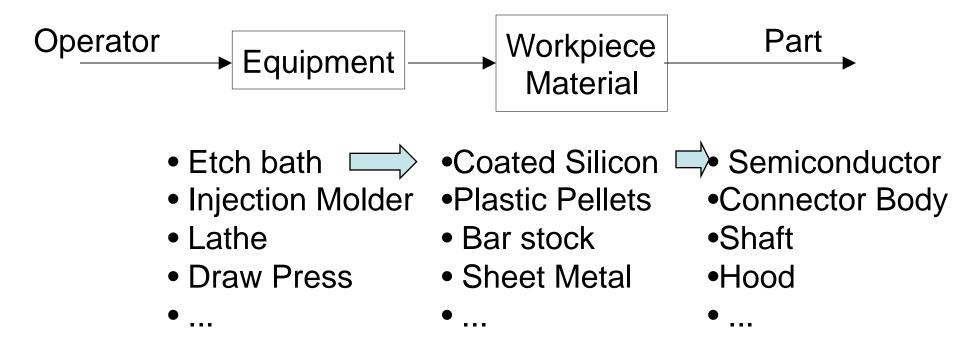
Manufacturing Processes

- How are they defined?
- How to they do their thing?
- How can they be categorized?

Why don't they always get it right?

Origins of Variation

The Process Components



What Causes *Variation* in the Process Output?

- Material Variations
 - Intrinsic Properties, Initial Geometry
- Equipment Variations
 - Non-repeatable, long term wear, deflections
- Operator Variations
 - Inconsistent control, excessive "tweaking"
- "Environment" Variations
 - Temperature and Handling inconsistencies

Can We Rank These?

- Likelihood of Variation?
- Frequency of Variation?
- Magnitude of Variation?
- Sensitivity to Variation?

Can We Rank These?

- Equipment
 - Fixed "Iron"
 - Can be Automated (Controlled) to Keep Energy States as Desired
- Material
 - "Flows" Through the Process
 - Constantly Changing
 - Energy Transfer from Equipment
 Variable

Process Control Hierarchy

Identify and Reduce Disturbances

- Good Housekeeping (Ops Management)
- Standard Operations (SOP's)
- Statistical Analysis and Identification of Sources
- Feedback Control of Machines
- Reduce Sensitivity (Process Optimization or Robustness)
- Measure Sensitivities via Designed Experiments
- Adjust "free" parameters to minimize
- Measure output and manipulate inputs
 - Feedback control of Output(s)

Why not Always "Process Output Control"?

- Lack of Measurements
 - Shape not accessible
- Lack of Spatial Resolution
 - Complex shape, simple control u
- Cost/Benefit vs. Other Methods
- Sufficiency of Equipment Control
 - e.g. numerical control

Modeling Variation

Applying Statistics to Manufacturing: The Shewhart Approach (circa 1925)*

- All Physical Processes Have a Degree of Natural Randomness
- A Manufacturing Process is a Random Process if all "Assignable Causes" (identifiable disturbances) are eliminated
- A Process is "In Statistical Control" if only "Common Causes" (Purely Random Effects) are present.

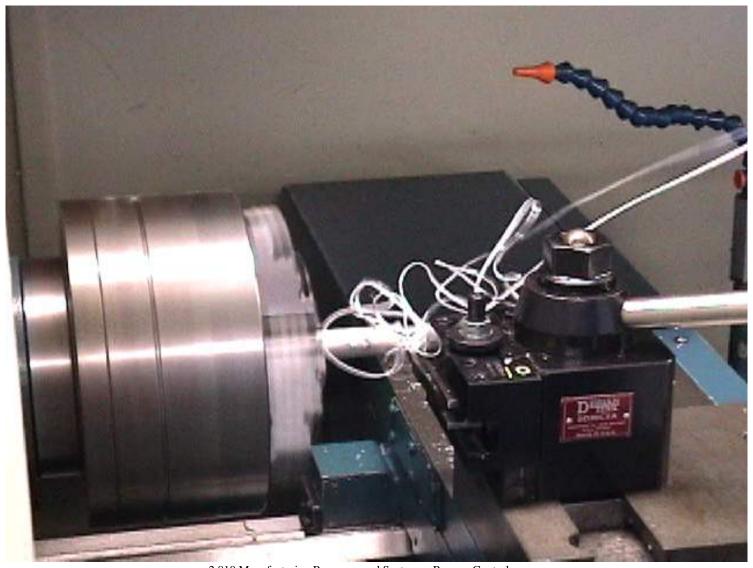
W.A. Shewhart, "The Applications of Statistics as an Aid in Maintaining Quality of a Manufactured Product", Journal of the American Statistical Association, <u>20</u>, No. 152, Dec. 1925.

Shewhart Applied to Manufacturing

- Measure and Plot the Process Output
- Look for Any Sign of Non-Random (Deterministic) Behavior
 - No in Statistical Control
- Identify the Cause of that Behavior and Reduce or Eliminate it
- Verify That the Process is Now Purely Random
 - In Statistical Control

Statistical Models for Manufacturing

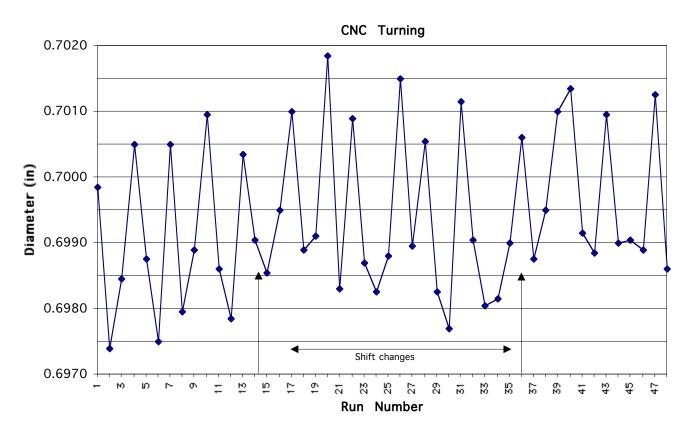
Consider: Turning Process



2.810 Manufacturing Processes and Systems - Process Control 11/2/2015

Observations from Experiments

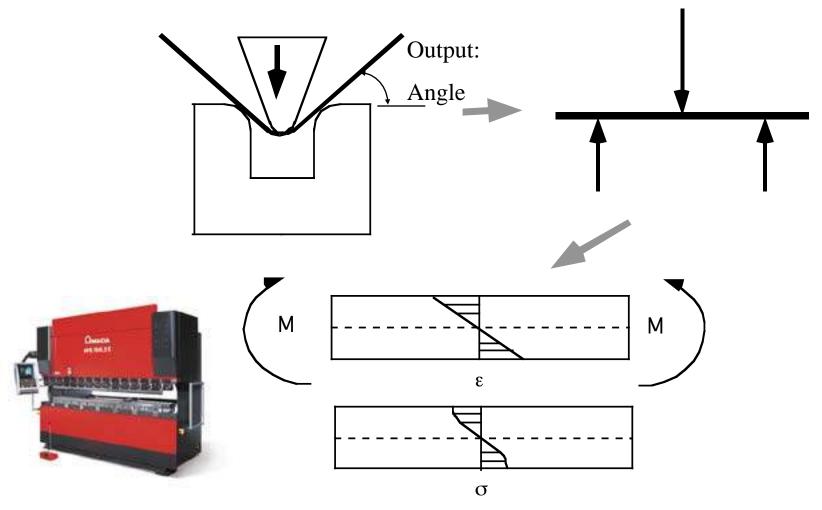
Randomness + Deterministic Changes



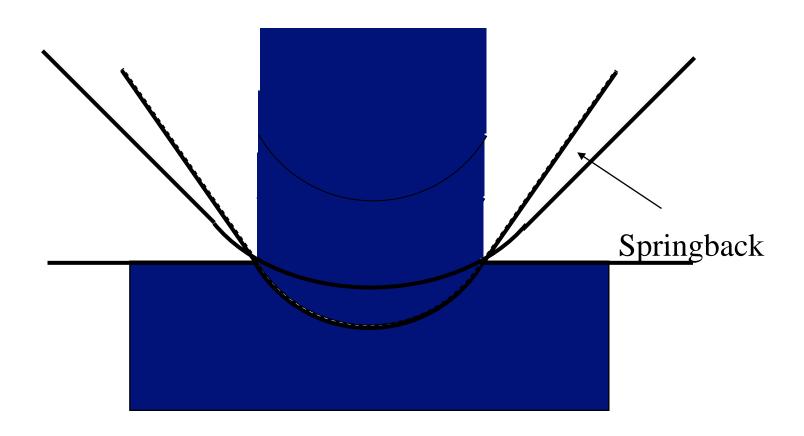
random or unknown

Δα

Brake Bending of Sheet



Bending Process



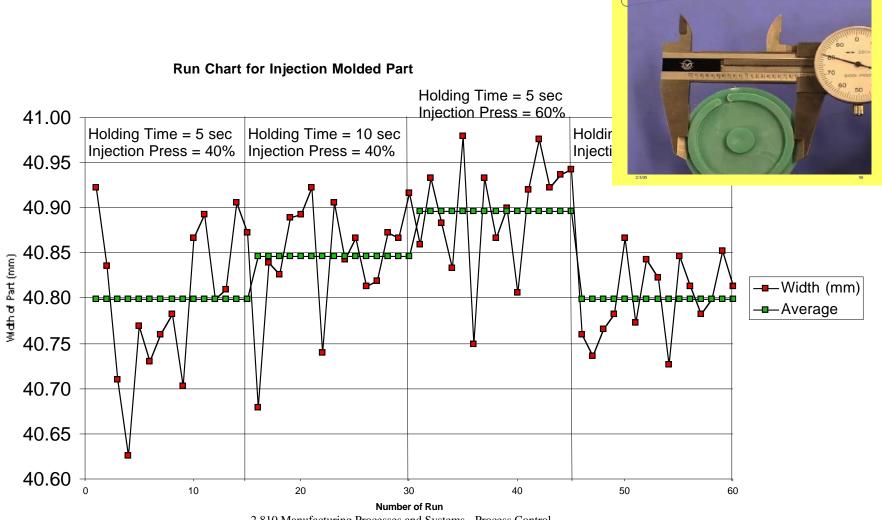
Observations from Bending Process

- Clear Input-Output Effects (Deterministic)
- Also Randomness as well

Angle changes with depth

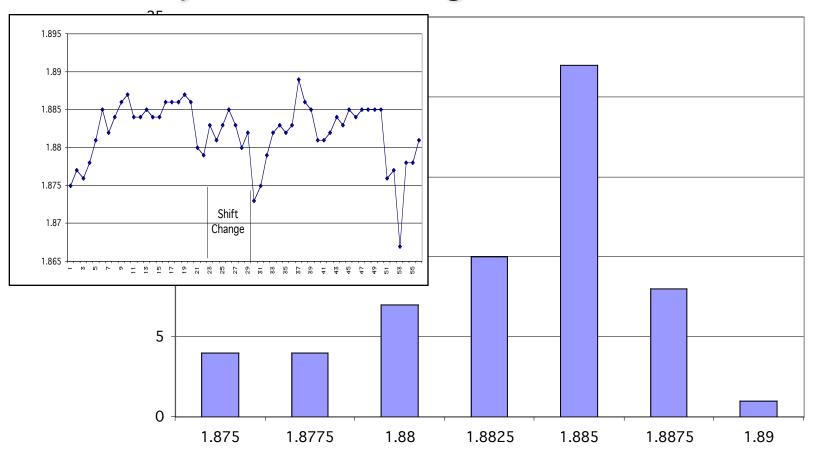
 $\Delta Y \rightarrow \Delta u$

Observations from Injection Molding

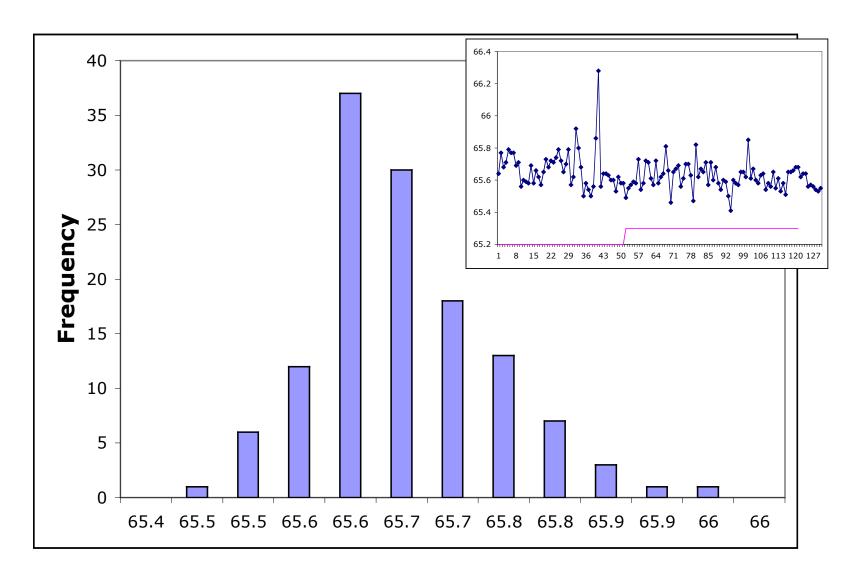


Consider: No Effective Changes $(\partial Y/\partial u = 0)$

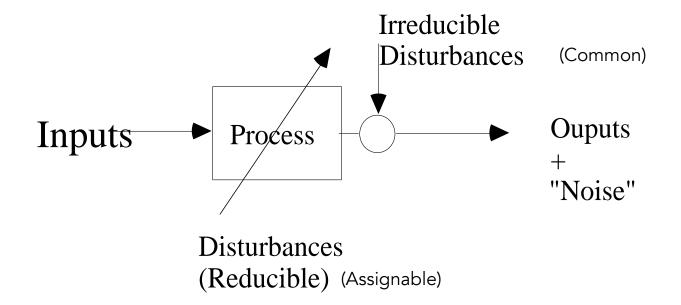
Injection Molding Entire Run



Injection Molding (S' 2003)



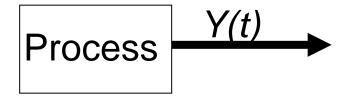
How To Model to Distinguish these Effects?



A Random Process + A Deterministic Process

Random Processes

 Consider the Output-only, "Black Box" view of the Run Chart



- How do We Characterize The Process?
 - Using Y(t) only
- WHY do we Characterize the Process
 - Using Y(t) only?

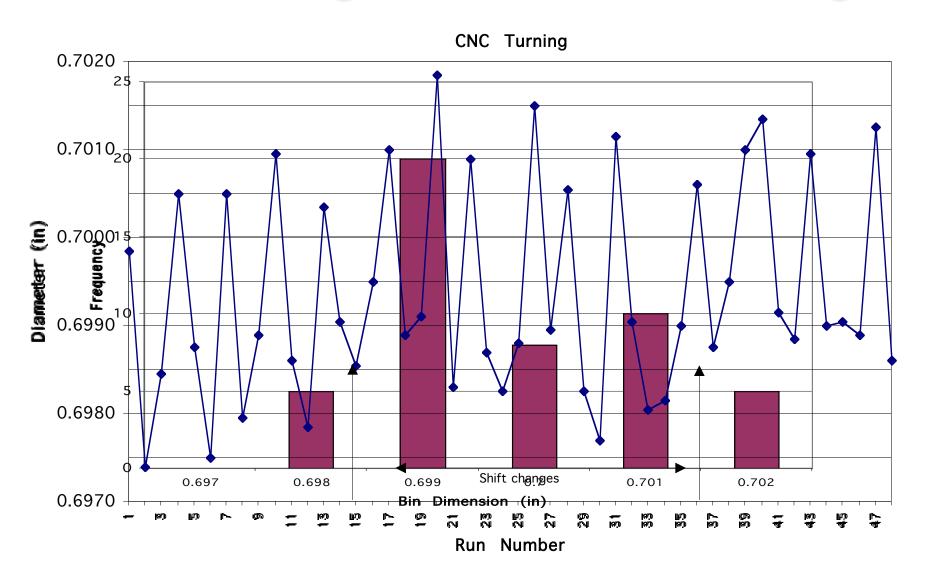
How to Describe Randomness?

- Look at a Frequency Histogram of the Data
- Estimates likelihood of certain ranges occurring:

$$-\Pr(y_1 < Y < y_2)$$

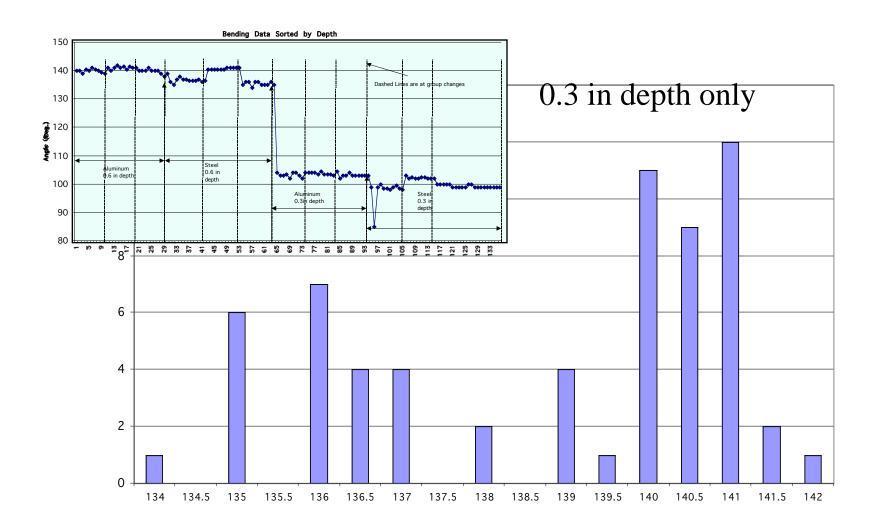
- "Probability that a random variable Y falls between the limits y_1 and y_2 "

Histogram for CNC Turning



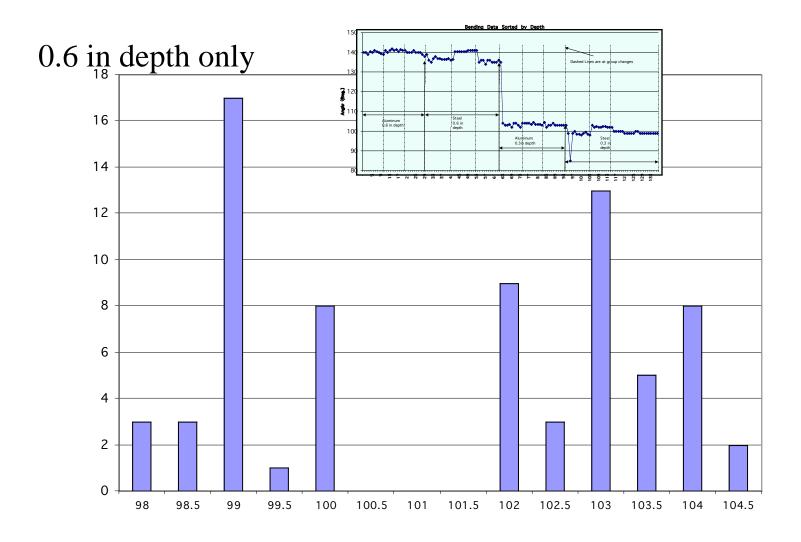
Histogram for Bending

(MIT 2002 data)



Histogram for Bending

(MIT 2002 data)



Conclusion?

- When there are no input change (e.g. using SOP's) a consistent histogram pattern can emerge
- How do we use knowledge of this pattern?
 - Predict behavior
 - Set limits on "normal" behavior
- Define analytical probability density functions

Analysis of Histograms

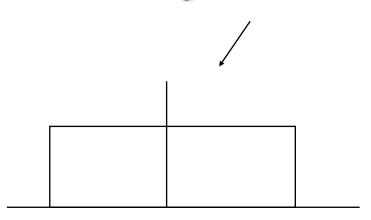
- Is there a consistent pattern?
- Is an underlying "parent" distribution suggested?

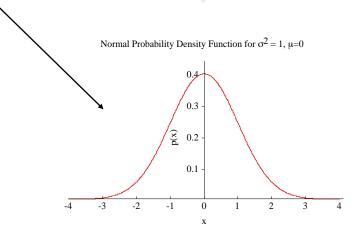
Underlying or "Parent" Probability

- A model of the "true", continuous behavior of the <u>random</u> process
- Can be thought of as a continuous random variable obeying a set of rules (the probability function)
- We can only glimpse into these rules by sampling the random variable (i.e. the process output)
- Underlying process can have
 - Continuous Values (e.g. geometry)
 - Discrete Values (e.g. defect occurrence)

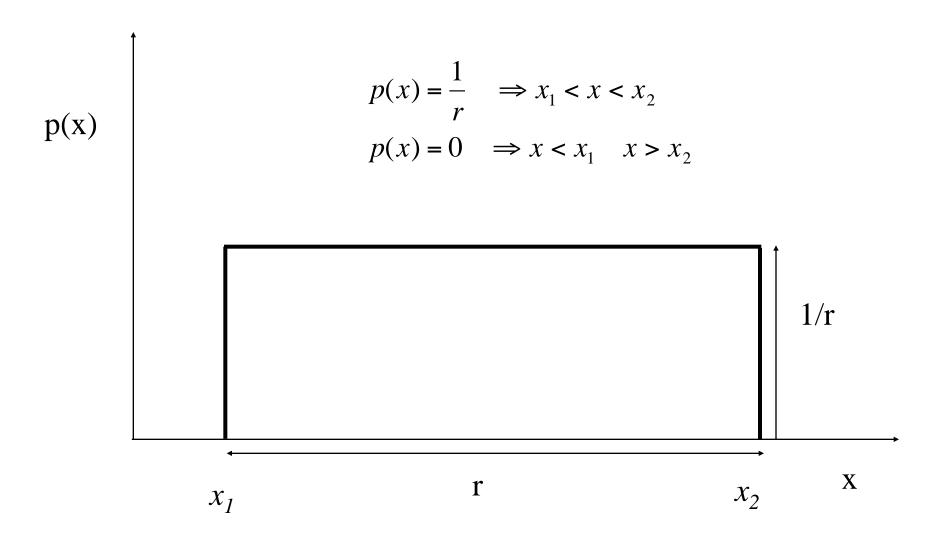
Process Outputs as a Random Variable

- The Histogram suggests a pdf
 - Parent or underlying behavior "sampled" by the process
- Standard Forms (There are many)
 - e.g. The Uniform and Normal pdf's



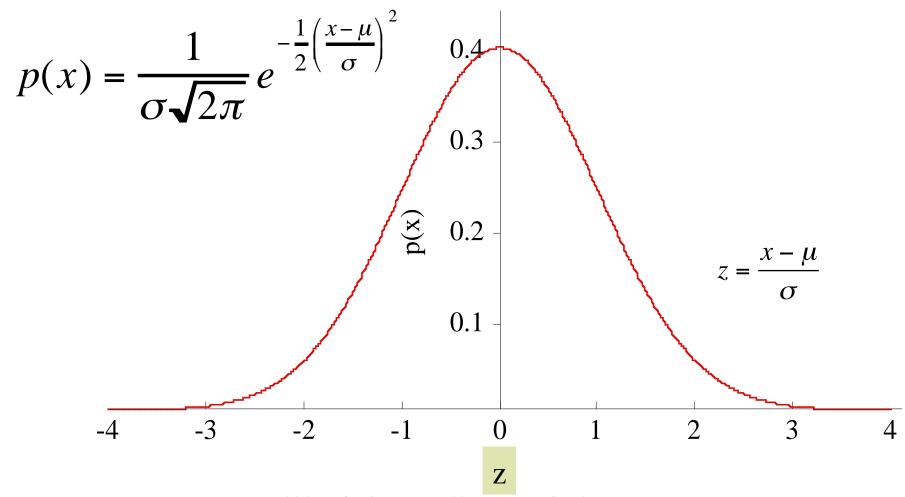


The Uniform Distribution



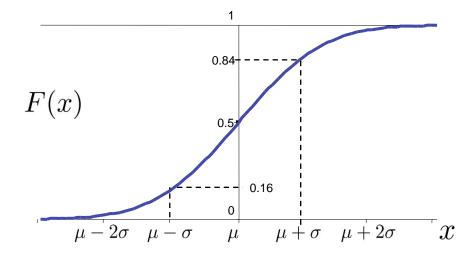
Standard Normal Distribution

Normal Probability Density Function for $\sigma^2 = 1$, $\mu = 0$

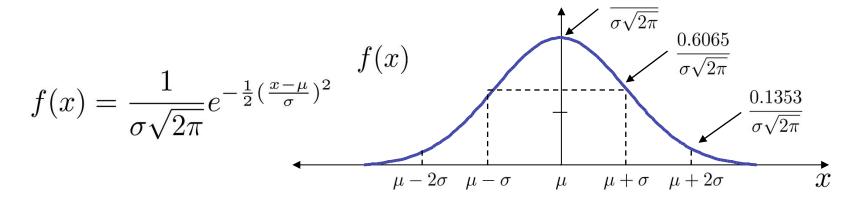


Continuous Distribution: Normal or Gaussian

cdf



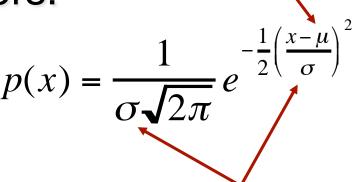
$$x \sim N(\mu, \sigma^2)$$



Properties of the Normal pdf

- Symmetric about mean
- Only two parameters:

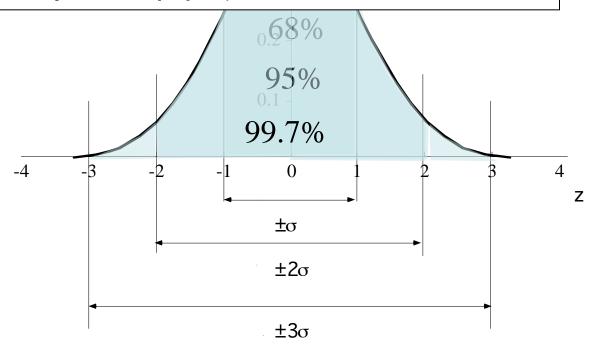
$$\mu$$
 and σ^2



- Superposition Applies:
 - sum of normal random variables has a normal distribution

Interpretation of the PDF: Confidence Intervals

• Probability that $|x| > \mu + 3\sigma = 3/1000$



Model Calibration

- For the Normal PDF, we need two parameters: μ and σ
- We have to **estimate** μ and σ using sample statistic based on samples of the output (i.e. measurements)

Sample Statistics

x(j) = samples of x(t) taken n times

$$\overline{x} = \frac{1}{n} \sum_{j=1}^{n} x(j)$$
: Average or Sample Mean

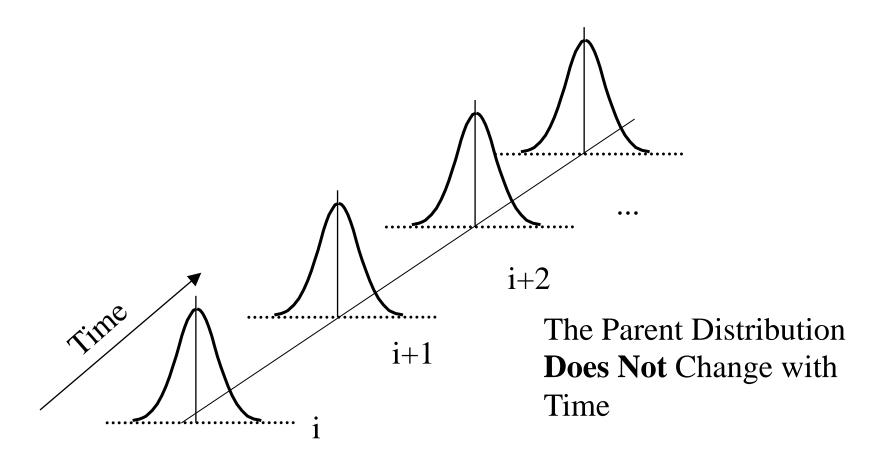
$$S^{2} = \frac{1}{n-1} \sum_{j=1}^{n} (x(j) - \overline{x})^{2}$$
: Sample Variance

$$S = \sqrt{\frac{1}{n-1}} \sum_{j=1}^{n} (x(j) - \overline{x})^2$$
: Sample Std.Dev.

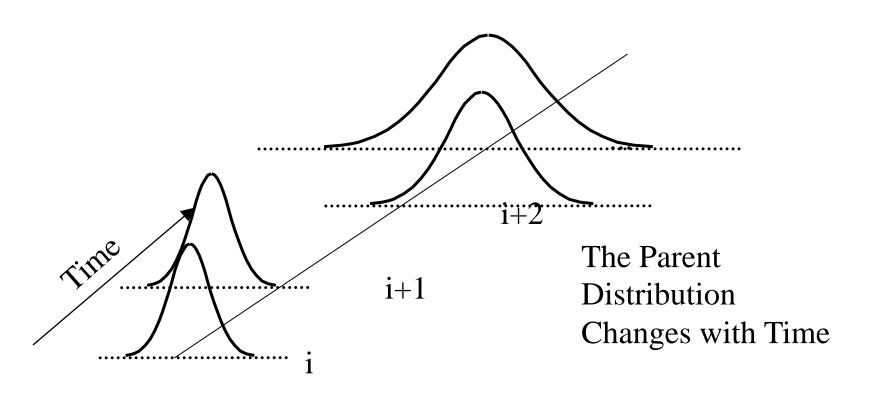
Conclusions

- All Physical Processes Have a Degree of Natural Randomness
- We can Model this Behavior using Probability Distribution Functions
- We can Calibrate and Evaluate the Quality of this Model from Measurement Data using appropriate Sample Statistics

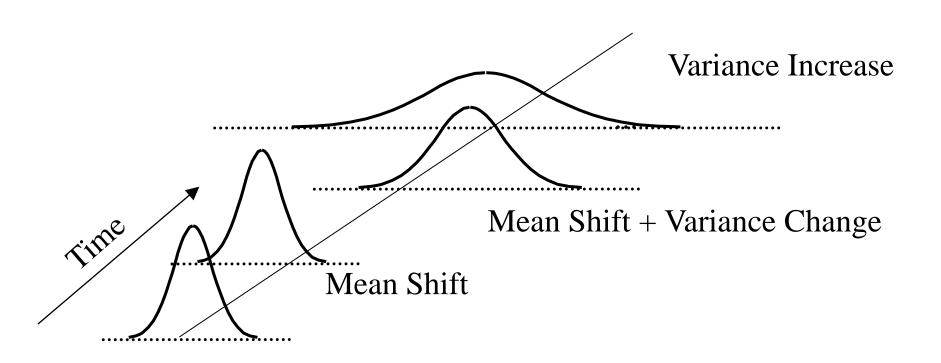
"In-Control"



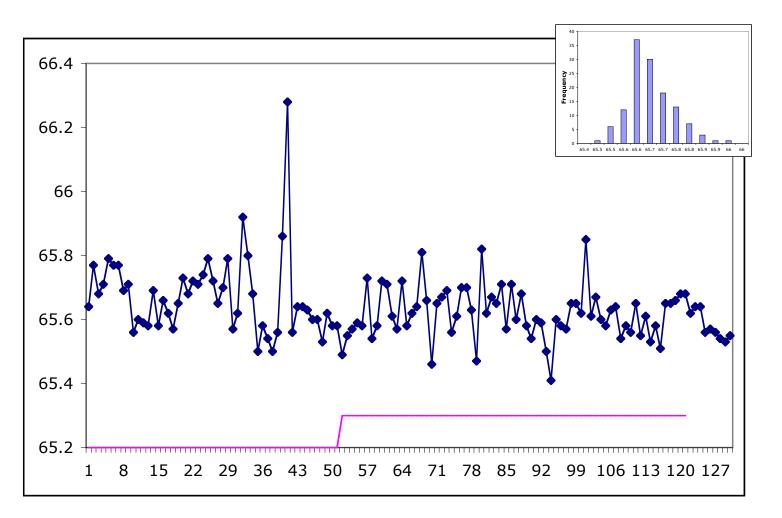
"Not In-Control"



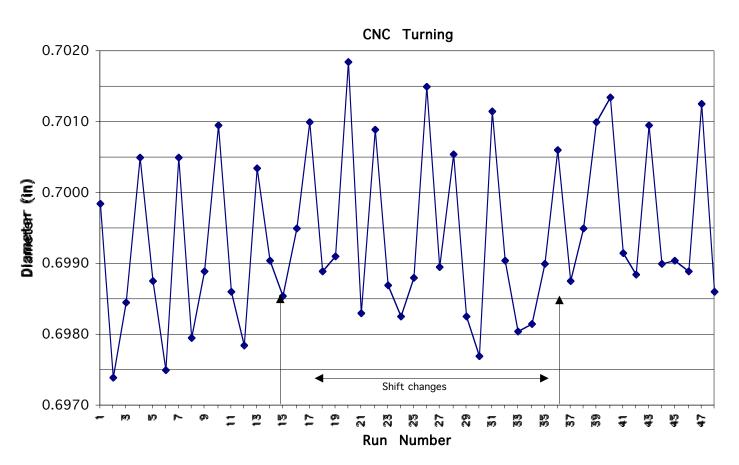
"Not In-Control"



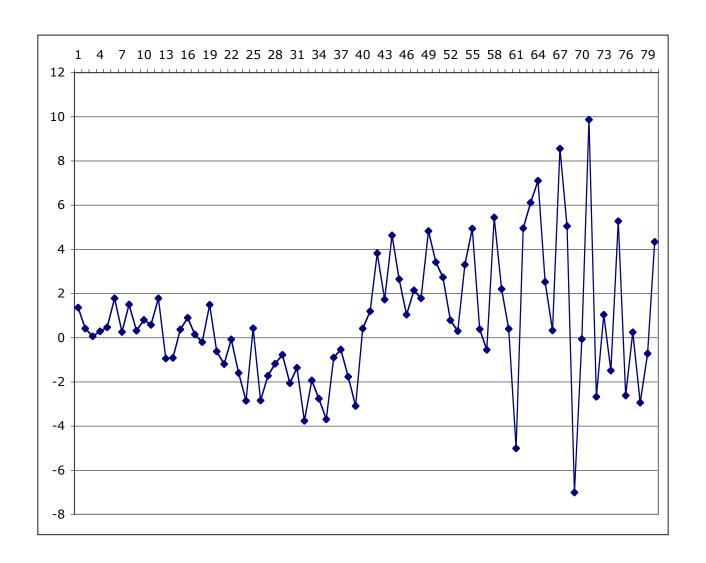
In-Control (Almost)



Not In-Control



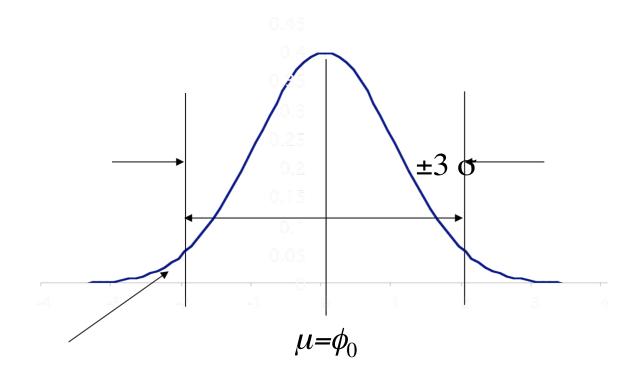
"Not In-Control"



Applying in Real-Time: Xbar and S Charts

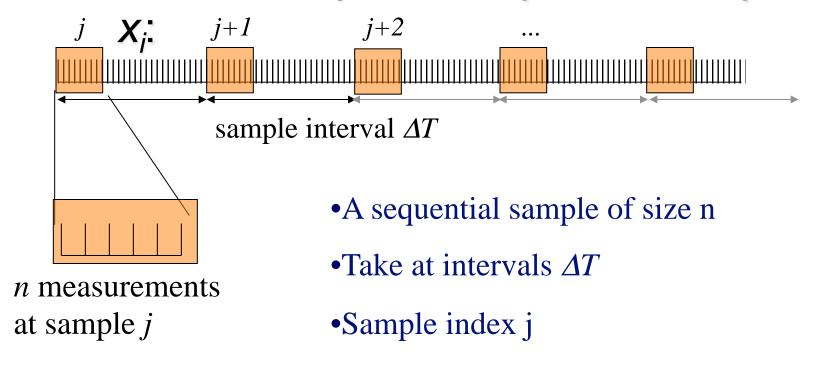
- Shewhart: Plot the Evolving Sample Statistics (\bar{x} & s)
 - These are the estimated μ & σ for the "Normal" process model
 - Plot sequential <u>average</u> of process
 - Xbar chart
 - Distribution?
 - Plot sequential sample standard deviation
 - S chart

Process Model

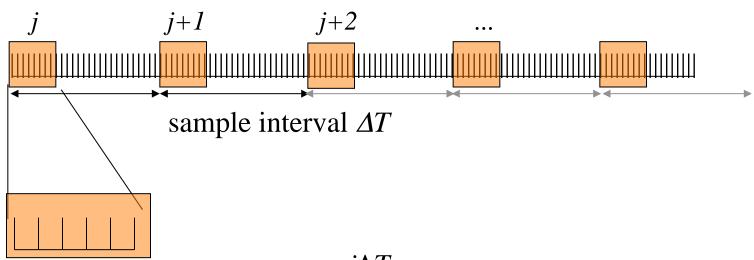


Data Sampling and Sequential Averages

Given a sequence of process outputs



Data Sampling

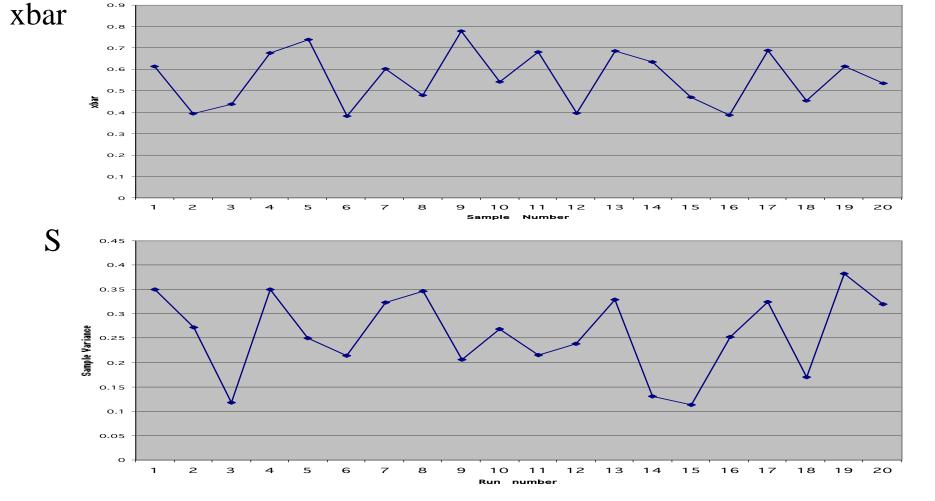


n measurements at sample j

$$\overline{x}_{j} = \frac{1}{n} \sum_{i=(j-1)\Delta T+1}^{j\Delta T+n} x_{i} \quad \text{sample } j \text{ mean}$$

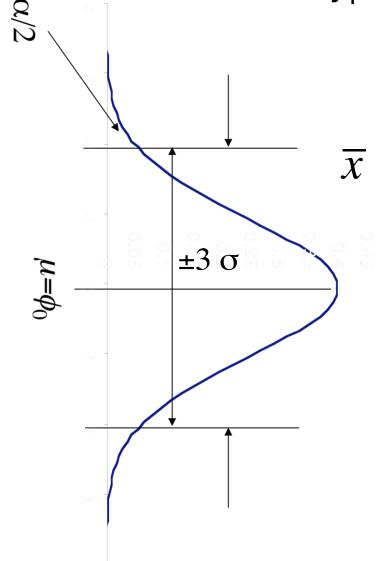
$$S_j^2 = \frac{1}{n-1} \sum_{i=(j-1)\Delta T}^{j\Delta T + n} (x_i - \bar{x}_j)^2 \text{ sample } j \text{ variance}$$

Plot of xbar and S Random Data <u>n=5</u>



xBar Chart as Hypothesis Test

Hypothesis H_o : mean = μ and SD = σ



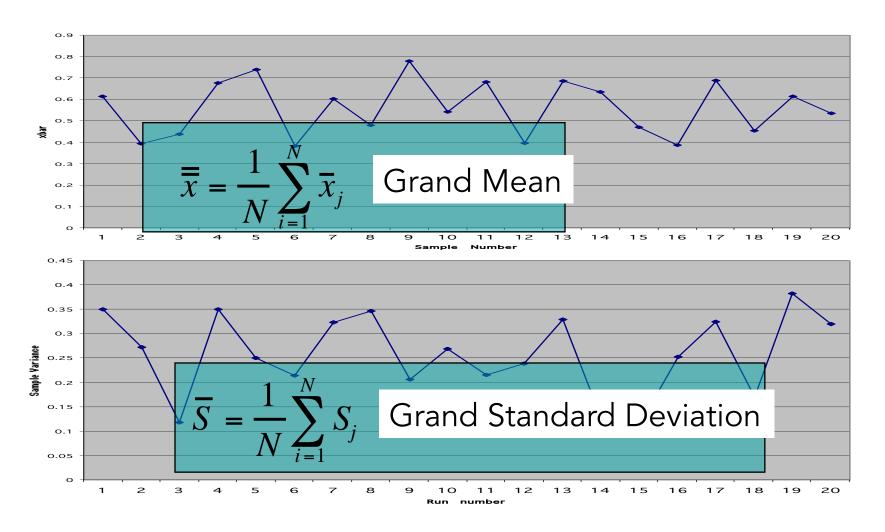
Samples Unlikely to Fall Here given H_0

Samples Likely to Fall Here given H₀

Samples Likely to Fall Here given H_0

Samples Unlikely to Fall Here given H_0

Overall Statistics



Setting Chart Limits

Expected Ranges

- Confidence Intervals
 - Intervals of + n Standard Deviations
 - Most Typical is $\pm 3\sigma$

Superposition of Random Variables

If we define a variable

$$y = C_1 X_1 + C_2 X_2 + C_3 X_3 + C_4 X_4 + \dots$$

- c; are constants
- x_i are independent random variables

Then
$$\mu_y = c_1 \mu_1 + c_2 \mu_2 + c_3 \mu_3 + c_4 \mu_4 + \dots$$

$$\sigma_y^2 = c_1^2 \sigma_\iota^2 + c_2^2 \sigma_2^2 + c_3^2 \sigma_3^2 + c_4^2 \sigma_4^2$$

For example
$$y = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $c_j = \frac{1}{n}$ $\sigma_{\overline{x}}^2 = \frac{1}{n} \sigma_{\overline{x}}$

Chart Limits - Xbar

• If we knew σ_x then by superposition:

$$\sigma_{\bar{x}} = \sqrt{\frac{1}{n}}\sigma_{x}$$

 But Since we Estimate the Sample Standard Deviation, then

 $E(S_j) = C_4 \sigma_{\bar{x}}$ (S_j is a biased estimator)

where
$$C_4 = \left(\frac{2}{n-1}\right)^{1/2} \frac{\Gamma(n/2)}{\Gamma((n-1)/2)}$$

Chart Limits xbar chart

The estimate of *True* Sample Mean Variance (variance of the mean) is biased

To remove this bias for the xbar $\pm 3\sigma$ limits we use:

$$UCL = \overline{\overline{x}} + 3\frac{\overline{S}}{C_4\sqrt{n}} \qquad LCL = \overline{\overline{x}} - 3\frac{\overline{S}}{C_4\sqrt{n}}$$

For the example
$$n=5$$
 $C_4 = (0.5)^{1/2} \frac{\Gamma(2.5)}{\Gamma(2)} = 0.707 \frac{1.33}{1} = 0.94$

Chart Limits S

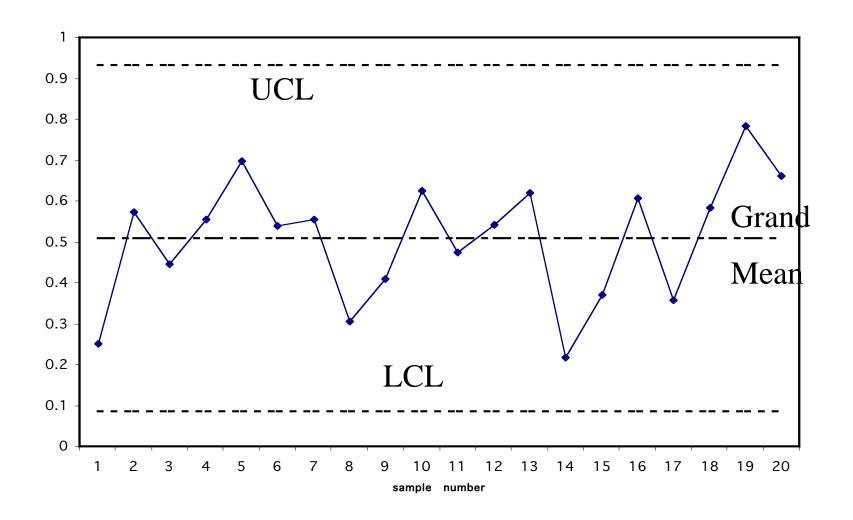
The variance of the estimate of S can be shown to be: $\sigma_S = \sigma \sqrt{1 - C_4^2}$

So we get the chart limits:

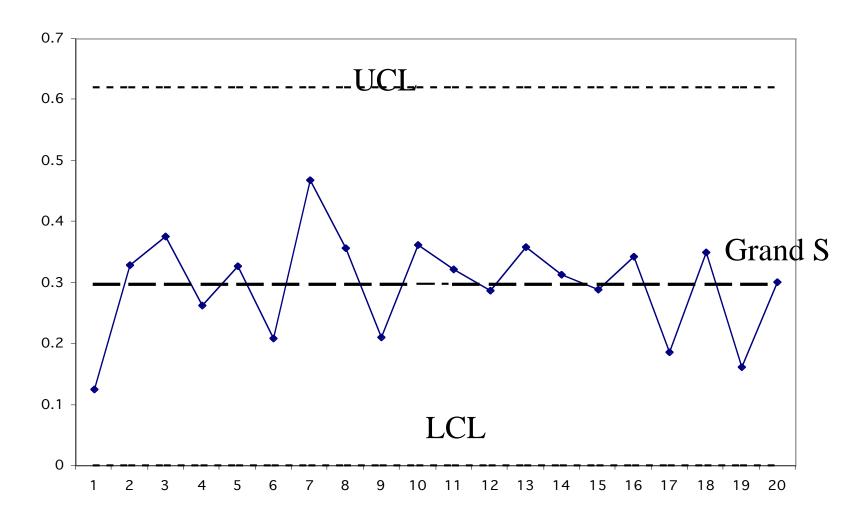
$$UCL = \overline{S} + 3\frac{\overline{S}}{C_4} \sqrt{1 - {C_4}^2}$$

$$LCL = \overline{S} - 3\frac{\overline{S}}{C_4}\sqrt{1 - {C_4}^2}$$

Example xbar



Example S



Detecting Problems from Running Data

Appearance of data

Confidence Intervals

Frequency of extremes

Trends

Western Electric Rules

- Points outside limits
- 2-3 consecutive points outside 2 sigma
- Four of five consecutive points beyond
 1 sigma
- Run of 8 consecutive points on one side of center

Test for "Out of Control"

- Extreme Points
 - Outside ±3σ
- Improbable Points
 - $-2 \text{ of } 3 > \pm 2\sigma$
 - $-4 \text{ of } 5 > \pm 1\sigma$
 - All points inside $\pm 1\sigma$

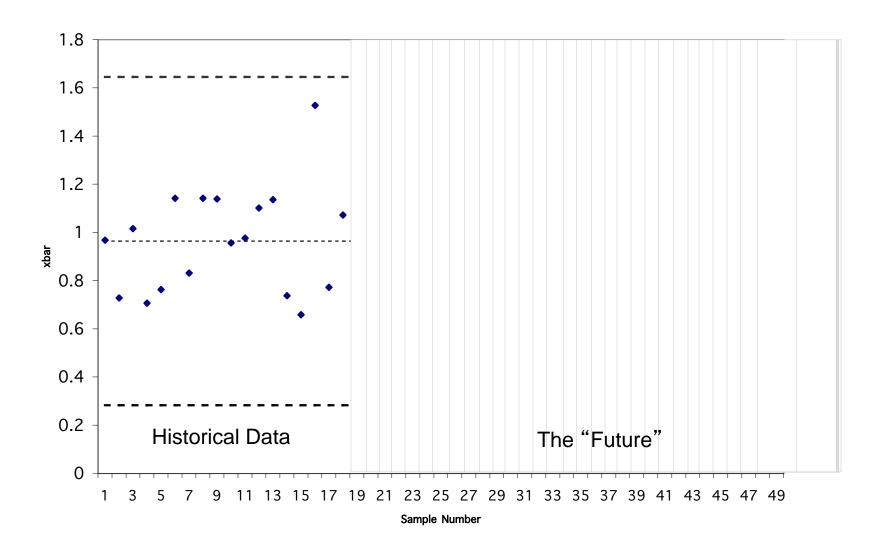
Tests for "Out of Control"

- Consistently above or below centerline
 - Runs of 8 or more
- Linear Trends
 - 6 or more points in consistent direction
- Bi-Modal Data
 - 8 successive points outside $\pm 1\sigma$

Applying Shewhart Charting

- Find a run of 25-50 points that are "incontrol"
- Compute chart centerlines and limits
- Begin Plotting subsequent $xbar_j$ and S_j
- Apply rules, or look for trends, improbable events or extremes.
- If these occur, process is "out of control"

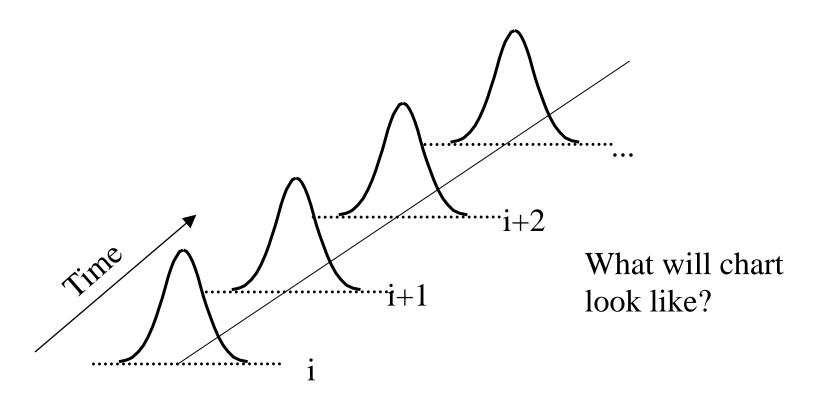
Real-Time



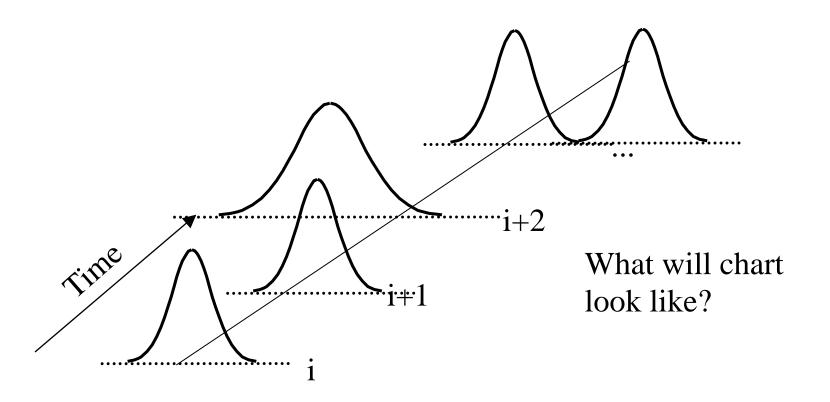
Out of Control

- Data is not Stationary
 - (μ or σ are not constant)
- Process Output is being "caused" by a disturbance (common cause)
- This disturbance can be identified and eliminated
 - Trends indicate certain types
 - Correlation with know events
 - shift changes
 - material changes

"In-Control"



"Not In-Control"



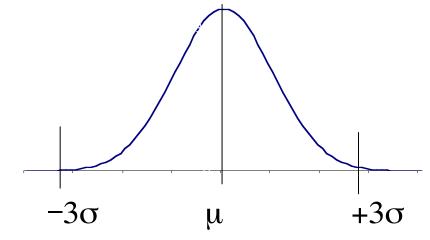
Another Use of the Statistical Process Model:

The Manufacturing -Design Interface

We now have an empirical model of the process

How "good" is the process?

Is it capable of producing what we need?

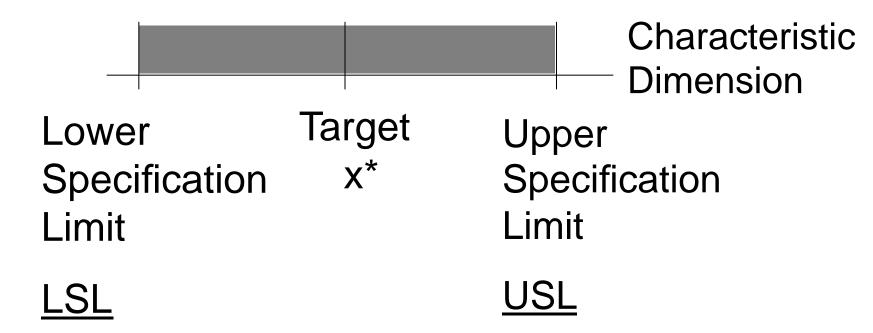


Process Capability

- Assume Process is In-control
- Described fully by xbar and s
- Compare to Design Specifications
 - Tolerances
 - Quality Loss

Design Specifications

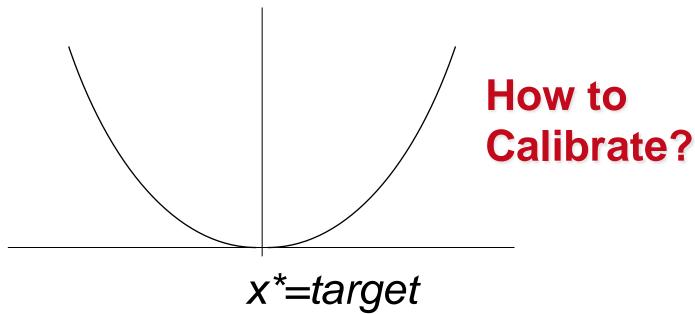
Tolerances: Upper and Lower Limits



Design Specifications

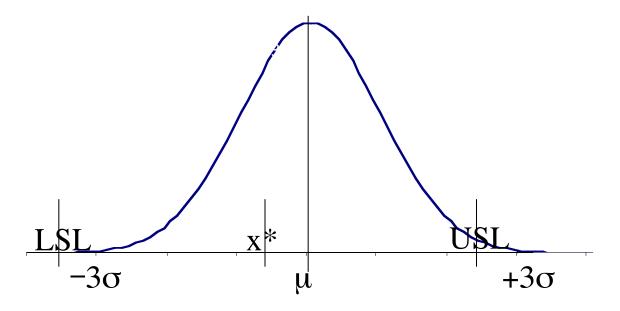
 Quality Loss: Penalty for Any Deviation from Target

$$QLF = L^*(x-x^*)^2$$



Use of Tolerances: Process Capability

- Define Process using a Normal Distribution
- Superimpose x*, LSL and USL
- Evaluate Expected Performance



Process Capability

Definitions

$$C_p = \frac{(USL - LSL)}{6\sigma} = \frac{\text{tolerance range}}{99.97\% \text{ confidence range}}$$

- Compares ranges only
- No effect of a mean shift:

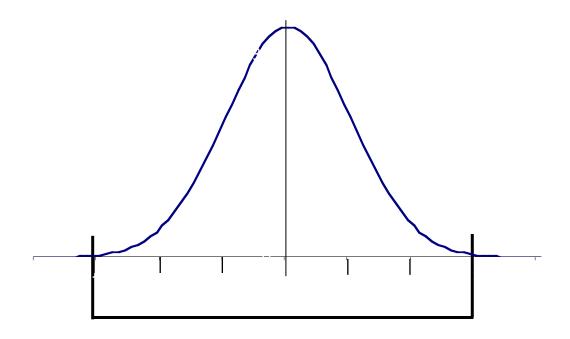
Process Capability: Cpk

$$C_{pk} = \min\left\{\frac{(USL - \mu)}{3\sigma}, \frac{(LSL - \mu)}{3\sigma}\right\}$$

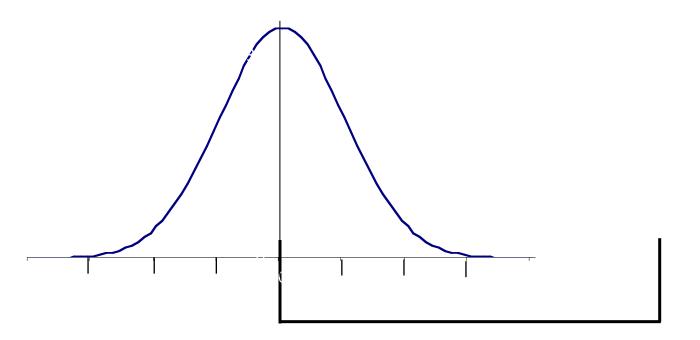
= Minimum of the normalized deviation from the mean

Compares effect of offsets

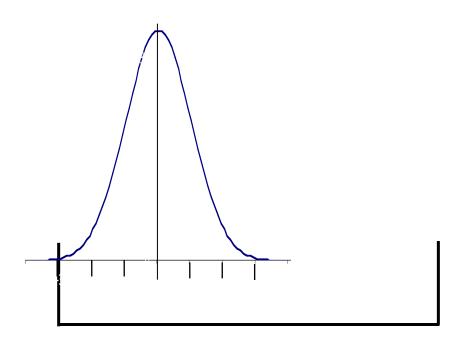
$$Cp = 1; Cpk = 1$$



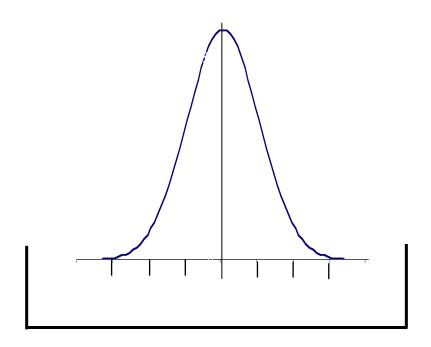
$$Cp = 1; Cpk = 0$$



$$Cp = 2; Cpk = 1$$



$$Cp = 2$$
; $Cpk = 2$



Effect of Changes

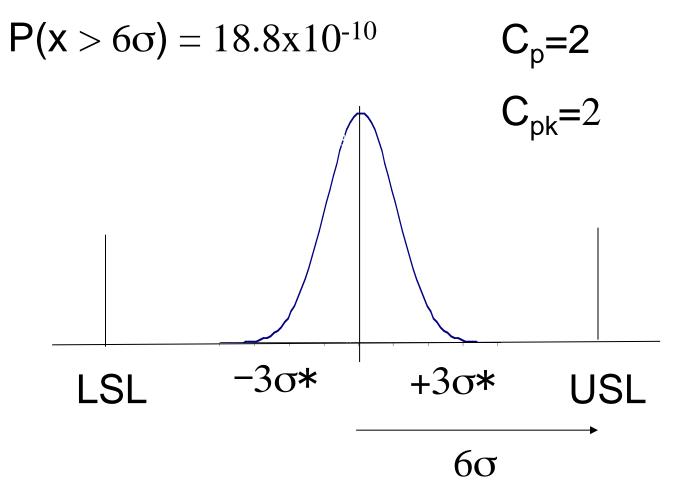
- In Design Specs
- In Process Mean
- In Process Variance

What are good values of Cp and Cpk?

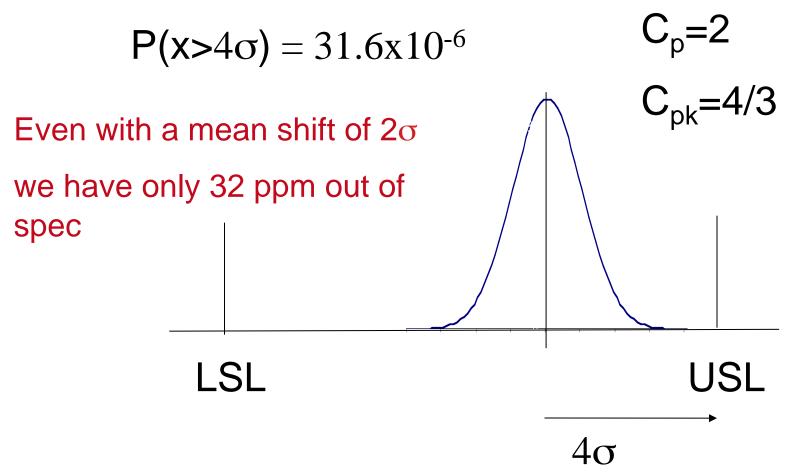
Cpk Table

Cpk	Z	P <ls or<="" th=""></ls>
		P>USL
1	3	1E-03
1.33	5	3E-07
1.67	4	3E-05
2	6	1E-09

The "6 Sigma" problem

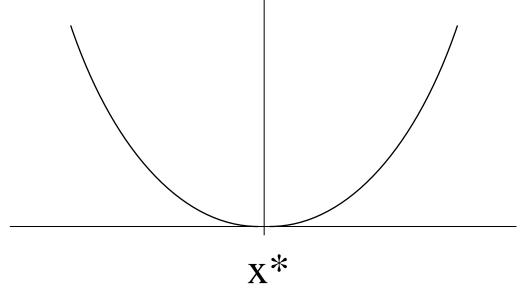


The 6 σ problem: Mean Shifts



Capability from the Quality Loss Function

QLF =
$$L(x) = k^*(x-x^*)^2$$



Given L(x) and p(x) what is $E\{L(x)\}$?

Expected Quality Loss

$$E\{L(x)\} = E[k(x - x^*)^2]$$

$$= k[E(x^2) - 2E(xx^*) + E(x^{*2})]$$

$$= k\sigma_x^2 + k(\mu_x - x^*)^2$$

Penalizes Variation

Penalizes Deviation

Process Capability

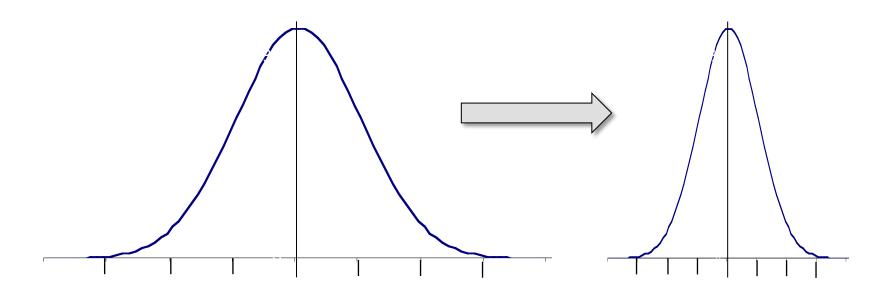
- The reality (the process statistics)
- The requirements (the design specs)
- Cp a measure of variance vs. tolerance
- Cpk a measure of variance from target
- Expected Loss- An overall measure of goodness

Process Control Hierarchy

- Identify and Reduce Causal Disturbances
 - Good Housekeeping
 - Standard Operations (SOP's)
 - Feedback Control of Machines
 - Eliminate Equipment Variations
 - Statistical Analysis and Identification of Sources (SPC)
 - Eliminate Assignable Causes

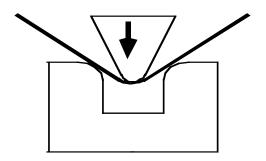
Process Control Hierarchy

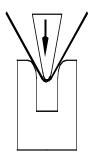
- NEXT: Reduce <u>Sensitivity</u> to Disturbance
 - Measure Sensitivities via Designed Experiments (DOE)
 - Adjust "free" parameters to minimize variations



Example: Bending Sensitivity to Yield Stress

Simple Example: Die Width for Air Bending (An adjustable equipment property):

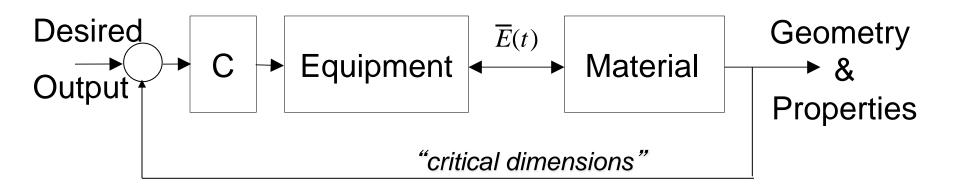




- Wide Die:
 - Low force,
 - high spring back,
 - high sensitivity to variations in yield stress

- Narrow Die:
 - High force,
 - Higher material stress,
 - Lower spring back,
 - Lower sensitivity to variations in yield stress,

Final Step: "Output Control"



Examples:

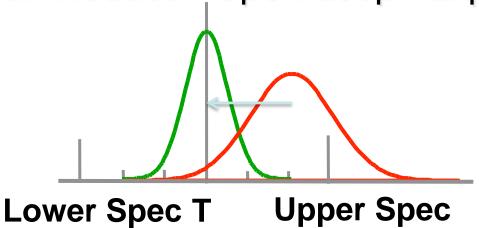
- Web Thickness in Milling
- Sheet Thickness in Rolling
- Sheet Angle in Bending

Implementing Product Feedback Control

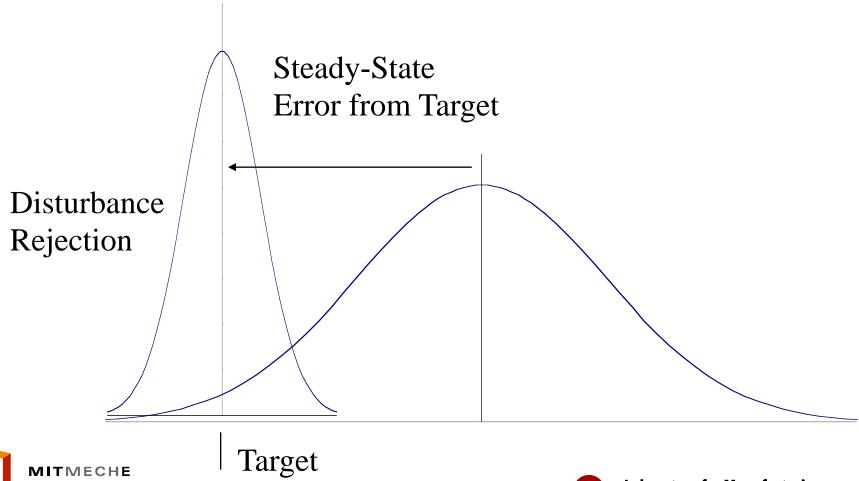
- Continuous In-Process Measurements
 - Regulate Process States In-Process
- Sampling and Monitoring (SPC)
 - Measure After-Process and Diagnose
- Part to Part Sampling and Control
 - Cycle to Cycle Control: Measure After each
 Cycle and Improve Process Capability

Conclusions: Single Variable Case

- Cycle to Cycle Control
 - Obeys Root Locus Prediction wrt Dynamics
 - Amplifies White Noise Disturbance
 Attenuates Colored Noise Disturbance
 - Can Reduce Mean Error (Zero if I-control)
 - Can Reduce "Open Loop" Expected Loss



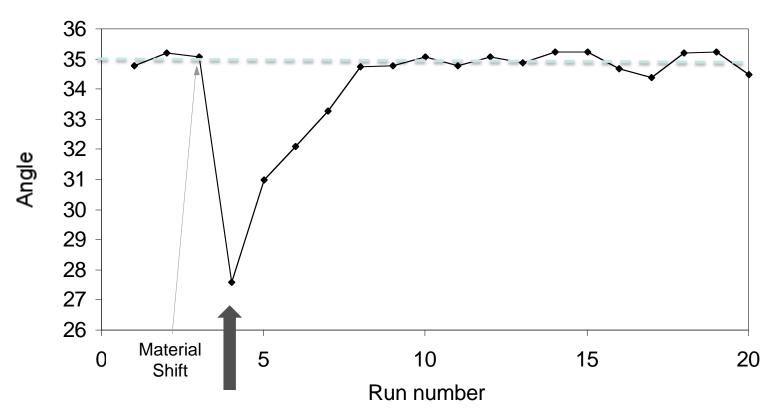
Feedback Control Objectives



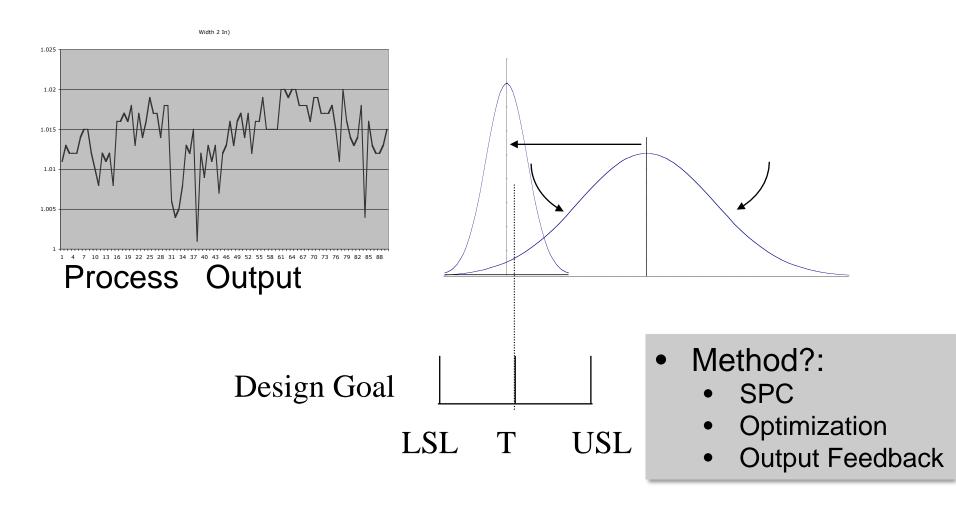
Manufacturing

It Works!: Bending Step Disturbance

- Effect of Material Change
 - Switch to a Stiffer Material more springback.



Manufacturing Objective



Conclusions

- Shewhart Charts
 - Application of Statistics to Production
 - Plot Evolution of Sample Statistics X and S
 - Look for Deviations from Model
- Process Capability
 - A measure of the process to meet a requirement
 - Includes variance and bias
 - Gets design and manufacturing talking
- If That's Not Good Enough
 - DOE/Optimization
 - Feedback Control
 - ...