Variability in Manufacturing Systems

Stanley B. Gershwin
gershwin@mit.edu
http://web.mit.edu/manuf-sys
Massachusetts Institute of Technology

Manufacturing Processes and Systems, 2.810
October 26, 2015

Manufacturing Systems Definitions

- Manufacturing: the transformation of material into something useful and portable.
- Manufacturing System: A manufacturing system is a set of machines, transportation elements, computers, storage buffers, people, and other items that are used together for manufacturing.
* Alternate terms:
- Factory
- Production system
- Fabrication facility
* Subsets of manufacturing systems, which are themselves systems, are sometimes called cells, work centers, or work stations.

Manufacturing Systems Manufacturing Systems Engineering

- The design and operation of new manufacturing systems;
- The analysis and improvement of existing manufacturing systems.

Manufacturing Systems Manufacturing Systems Engineering

Manufacturing Systems Engineering

Manufacturing Systems Manufacturing Industry Challenges

- Short product lifetimes. Frequent factory reconfiguration or replacement. Limited time for real-time learning to optimize factory.
- Large product diversity. Factories must be flexible.
- Short lead times and impatient customers.
- Inventory is perishable. It loses value rapidly due to obsolescence.
- Design and operation of manufacturing systems must take place in the presence of variability, uncertainty, and randomness.

Manufacturing Systems Manufacturing Systems Engineering Objectives

- Manufacturing systems must be complex to manage or tolerate variability, uncertainty, and randomness.
* Variability: change over time.
* Uncertainty: incomplete knowledge.
* Randomness: unpredictability that has some regularity that can be described precisely.

Manufacturing Systems Manufacturing Systems Engineering Objectives

- Improvements in the design and operation of manufacturing systems must
* reduce the variability, uncertainty, and randomness, or
* reduce the sensitivity of systems to variability, uncertainty, and randomness.

Manufacturing Systems
 Manufacturing Systems Engineering Objectives

- Satisfy demand.
- Meet due dates.
- Keep quality high.
- Keep inventory low.
- Be robust.
* Be insensitive to disruptions.
* Respond gracefully to disruptions.
* Respond gracefully to demand changes, engineering changes, etc.

Manufacturing Systems Quantity, Quality, and Variability

- Design Quality - the design of products that give customers what they want or would like (features).
- Manufacturing Quality - the manufacturing of products to avoid giving customers what they don't want or would not like (defects).

Manufacturing Systems Quantity, Quality, and Variability

- Quantity - how much is produced and when it is produced.
- Quality - how well it is produced.

In this session, we focus on quantity.
General Statement: Variability is the enemy of manufacturing.

Why care about variability? What is an operation?

Nothing happens until everything is present.

Why care about variability? What is an operation?

Whatever does not arrive last must wait.

- Inventory: parts waiting.
- Under-utilization: machines waiting.
- Idle work force: operators waiting.

Why care about variability? What is an operation?

- Reductions in the availability, or ...
- Increased variability in the availability ...
... of any one of these items increases waiting in the rest of them and reduces the performance of the system.

Why care about variability? Examples

- Factories are full of random events:
* machine failures
\star changes in orders
* quality failures
* human variability
- The economic environment is uncertain:
\star demand variations
* supplier unreliability
* changes in costs and prices

Why care about variability?

Therefore, factories should be

- designed and operated
to minimize the
- creation, propagation, or amplification
of uncertainty, variability, and randomness.

Variability and Inventory No variability

$75 \mathrm{gal} / \mathrm{sec}$ in, $75 \mathrm{gal} / \mathrm{sec}$ out constantly

The tank is always empty.

Variability and Inventory

Variability from random valves
Consider a random valve:

- The average period when the valve is open is 15 minutes.
- The average period when the valve is closed is 5 minutes.
- Consequently, the average flow rate through it is $75 \mathrm{gal} / \mathrm{sec}^{*}$.
* ... as long as flow is not impeded upstream or downstream.

Variability and Inventory

Variability from random valves

Four of the possibilities for two valves and one tank:

Variability and Inventory

Observation:

- There is never any water in the tank when the flow is constant.
- There is sometimes water in the tank when the flow is variable.

Conclusions:

1. You can't always replace random variables with their averages.
2. Variability causes inventory!!

Variability and Inventory

- To be more precise, non-synchronization causes inventory.
* Living things do not acquire energy at the same time they expend it. Therefore, they must store energy in the form of fat or sugar.
\star Rivers are dammed and reservoirs are created to control the flow of water - to reduce the variability of the water supply.
* For solar and wind power to be successful, energy storage is required for when the sun doesn't shine and the wind doesn't blow.

Variability and Inventory Queues

- Suppose customers arrive at time 0 , time 1 minute, 2 minutes, etc. and that service time is always exactly 54 seconds (.9 minutes).
* Then there is 1 customer in the system for 54 seconds of every minute and 0 customers for 6 seconds every minute. Therefore there are $54 / 60=.9$ customers in the system on the average.

Variability and Inventory Queues

- Suppose customers arrive with exponentially distributed inter-arrival times with average inter-arrival time 1 minute; and that service time is exponentially distributed with average service time 54 seconds.
* Then the average number of customers in the system is 9 .

Variability and Inventory Queues

Variability and Inventory Queues

Let $\rho=\lambda / \mu$. Under the assumptions of exponential inter-arrival time, exponential service time, and infinite buffer (called $M / M / 1$ queue), it can be shown that the average number of parts in the system is

$$
\bar{n}=\sum_{n} n P(n)=\frac{\rho}{1-\rho}=\frac{\lambda}{\mu-\lambda} .
$$

ρ is called the utilization of the server.

Variability and Inventory Queues

Little's Law: $L=\lambda W$, where L is the average number of customers in a system, W is the average customer waiting time, and λ is the average arrival rate.

This is true for almost all queuing systems in steady state.
In the $M / M / 1$ queue, $L=\bar{n}$, so the average waiting time is

$$
W=\frac{1}{\mu-\lambda}
$$

ρ is called the utilization of the server.

Variability and Inventory Queues

- μ is the capacity of the system.
- If $\lambda<\mu$, system is stable and waiting time remains bounded.
- If $\lambda>\mu$, waiting time grows over time.

Inventory and the Propagation of Variability Two-machine production lines

- A simple production line consisting of two machines and one in-process inventory buffer, making discrete parts.
- Both machines have unit operation time.
- Both machines are unreliable with geometric uptimes and downtimes. The parameters are

$$
\begin{aligned}
& \star \text { MTTR }_{1}=1 / r_{1}, \text { MTTR }_{2}=1 / r_{2} \\
& \star \text { MTTF }_{1}=1 / p_{1}, \text { MTTF }_{2}=1 / p_{2}
\end{aligned}
$$

- The buffer can hold a maximum of N parts.
- The first machine is never starved; the last machine is never blocked.

Inventory and the Propagation of Variability Two-machine production lines

- The efficiency e_{i} of Machine i is the fraction of time the machine is operational, not counting idle time.
- Because the time unit is the operation time, the efficiency of a machine is the same as its production rate in isolation, i.e., not counting idle time.
- The efficiency of Machine i is given by

$$
e_{i}=\frac{\mathrm{MTTF}_{i}}{\mathrm{MTTR}_{i}+\mathrm{MTTF}_{i}}=\frac{\mathrm{MTTF}_{i}}{\mathrm{MTBF}_{i}}=\frac{r_{i}}{r_{i}+p_{i}}
$$

Inventory and the Propagation of Variability Two-machine production lines

Simulations: Buffer Level vs. t

- The next four slides show simulation results. They show how the buffer level $(n(t))$ varies with time t as a result of random failures and repairs of the two machines.
- Compare the slides in order to relate the buffer level behavior to the machine parameters.
- Think about the average buffer level.

Inventory and the Propagation of Variability Two-machine production lines

Simulations: Buffer Level vs. t

$$
\begin{aligned}
\text { MTTR }_{i} & =10, \text { MTTF }_{i}=100, i=1,2 ; N=10 \\
\left(r_{1}\right. & \left.=.1, p_{1}=.01, r_{2}=.1, p_{2}=.01\right)
\end{aligned}
$$

Inventory and the Propagation of Variability Two-machine production lines

Simulations: Buffer Level vs. t

$$
\begin{aligned}
& \operatorname{MTTR}_{i}=10, \operatorname{MTTF}_{i}=100, i=1,2 ; N=100 \\
& \quad\left(r_{1}=.1, p_{1}=.01, r_{2}=.1, p_{2}=.01\right)
\end{aligned}
$$

Inventory and the Propagation of Variability Two-machine production lines

Simulations: Buffer Level vs. t

$$
\begin{gathered}
\mathrm{MTTR}_{i}=10, i=1,2, \mathrm{MTTF}_{1}=50, \mathrm{MTTF}_{i}=100 ; N=100 \\
\left(r_{1}=.1, p_{1}=.02, r_{2}=.1, p_{2}=.01\right)
\end{gathered}
$$

Inventory and the Propagation of Variability Two-machine production lines

Simulations: Buffer Level vs. t

$$
\begin{gathered}
\text { MTTR }_{i}=10, i=1,2, \text { MTTF }_{1}=100, \text { MTTF }_{i}=50 ; N=100 \\
\left(r_{1}=.1, p_{1}=.01, r_{2}=.1, p_{2}=.02\right)
\end{gathered}
$$

Inventory and the Propagation of Variability Two-machine production lines

Scenario:

- We are designing a line. We have already chosen the second machine.
- Two decisions are left: the choice of the first machine and the size of the buffer,
- Five vendors produce versions of the first machine.
\star All have the same operation time as the second machine.
* All have the same MTTF.
* They differ in MTTR. The vendors put different amounts of design effort into making the machines easy to repair.

Inventory and the Propagation of Variability Two-machine production lines

Production rate vs. Buffer Size

Inventory and the Propagation of Variability Two-machine production lines

Discussion:

- What is the limit of P as $N \rightarrow \infty$?
- Why are the curves increasing?
- Why do they reach an asymptote?
- Why are the curves with smaller r_{1} lower?

Inventory and the Propagation of Variability Two-machine production lines

Average Inventory vs. Buffer Size

Discussion:

- Why are the curves increasing?
- Why different asymptotes?
- What is \bar{n} when $N=0$?
- What is the limit of \bar{n} as $N \rightarrow \infty$?
- Why are the curves with smaller r_{1} lower?

Inventory and the Propagation of Variability Two-machine production lines

Inventory and the Propagation of Variability Long production lines

Inventory and the Propagation of Variability Long production lines

Which has a higher production rate?

- 9-Machine line with two buffering options:
* 8 buffers equally sized; and
$\rightarrow M_{1} \rightarrow B_{1}-M_{2} \rightarrow B_{2}-M_{3} \rightarrow B_{3}-M_{4}-M_{5}-B_{6}-M_{6}-B_{6}-M_{7}-B_{8}-M_{8}-B_{8}-M_{9}$
* 2 buffers equally sized.

Inventory and the Propagation of Variability Long production lines

Total Buffer Space

Inventory and the Propagation of Variability Long production lines

Optimal buffer space distribution

- Design the buffers for a 20-machine production line.
- The machines have been selected, and the only decision remaining is the amount of space to allocate for in-process inventory.
- The goal is to determine the smallest amount of in-process inventory space so that the line meets a production rate target.
- The common operation time is one operation per minute.
- The target production rate is .88 parts per minute.

Inventory and the Propagation of Variability Long production lines

- Case 1 MTTF $=200$ minutes and MTTR $=10.5$ minutes for all machines ($P=.95$ parts per minute).

Inventory and the Propagation of Variability Long production lines

- Case 1 MTTF $=200$ minutes and MTTR $=10.5$ minutes for all machines ($P=.95$ parts per minute).
- Case 2 Like Case 1 except Machine 5. For Machine 5, MTTF = 100 and MTTR $=10.5$ minutes ($P=.905$ parts per minute).

Inventory and the Propagation of Variability Long production lines

- Case 1 MTTF = 200 minutes and MTTR $=10.5$ minutes for all machines ($P=.95$ parts per minute).
- Case 2 Like Case 1 except Machine 5. For Machine 5, MTTF = 100 and MTTR $=10.5$ minutes ($P=.905$ parts per minute).
- Case 3 Like Case 1 except Machine 5. For Machine 5, MTTF = 200 and MTTR $=21$ minutes ($P=.905$ parts per minute).

Inventory and the Propagation of Variability Long production lines

Are buffers really needed?

Line	Production rate with no buffers, parts per minute
Case 1	.487
Case 2	.475
Case 3	.475

Yes. These numbers came from a zero-buffer formula.

Inventory and the Propagation of Variability Long production lines

Solution

Inventory and the Propagation of Variability Long production lines

- Observation from studying buffer space allocation problems:
* Buffer space is needed most where buffer level variability is greatest!

Other issues

- Setup changes
* Controllable disruption
* Reduces production time and creates inventory.
- Deterministic scheduling and MRP
* Recalculation required when an unanticipated event occurs
* This can cause instability and confusion

