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http://electron.mit.edu/~gsteele/mirrors/www.nmis.org/EducationTraining/machineshop/mill/intro.html 

Primitive tools to cut and scrape go 

back at least 150,000 yrs 

5 axis machining of aluminum 
Machining tutorial: 

http://electron.mit.edu/~gsteele/mirrors/www.nmis.org/EducationTraining/machineshop/mill/intro.html


Ancient Tools & Structures 

Stone work in Cusco Peru - Sacsayhuaman 



Modern Machining Practice 

5 axis High speed 

Complex parts New Configurations 



Outline 

1. Basics 

2. Machine Configurations/Process Planning 

3. Production Configurations 

4. New Developments 

5. Environment 

 



Basic Machining Processes 
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* Source: Kalpakjian, “Manufacturing Engineering and Technology” 
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Horizontal-spindle surface grinder 
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* Source: Kalpakjian, “Manufacturing Engineering and Technology” 

* 



Historical Development of 

Machine Tools 

Henry Maudslay, American System, CNC, Transfer Lines… 



Early paper 

on 

cutting 

mechanics 

Prof Nate Cook Prof Milt Shaw 



* Source: Reintjes, “Numerical Control 1991” 

NC machine tool developed at MIT mid 1950’s 





Basic Mechanics Issues 
 

– Shear strain 

– Power, plastic work 

– Friction, forces 

– Temperature rise 

– Heat, Tool materials, Rate limits 



Basic Machining Mechanism 

Eugene Merchant’s  model for orthogonal cutting 

Video on plastic deformation in machining 



Basic Machining Mechanism 

Shear takes place in 
a narrow zone near 
the tool tip at angle , 
the tool has rake angle ,  
the resulting shears is  
From geometry,  
 
= cot() + tan ( - ) 
 

 becomes large for small , 
and small or negative  

 
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
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
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Basic Machining Mechanism 



Basic Machining Mechanism 

 

Friction?  
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Cutting forces 

Fc = cutting force 
N  = normal force 
F  = friction force 
R  = resultant force 
Ft = thrust force 
= friction coef 
 = friction angle 

 
F

N
 tan
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Ref. Groover 

The Merchant Equation 



Ref. Groover 

The Thrust Force 

Ft = Fc tan ( - ) 



Basic Machining Mechanism 

Approximation 

 us ~ H (Hardness)  
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if friction work 

is on the order of plastic work

then:  us  3Y  H



Specific energy, uS  

For comparison see Table 26.2 for grinding 



Hence we have the approximation; 

Power ≈ us X MRR 

MRR is the Material Removal Rate or d(Vol)/dt 

Since Power is 
  P = Fc * V 

and MRR can be written as, 
  d(Vol)/dt = A * V 

Where A is the cross-sectional area of the undeformed chip, we can get 
an estimate for the cutting force as, 

Fc ≈ us  A 

Note that this approximation is the cutting force in the cutting direction. 
 

Basic Machining Mechanism 



Cutting Force Directions in Milling 
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Fc ~ H  Ac 

(Tangential Cutting Force ~  

Chip Cross-section  Hardness) 



Face Milling 



Feed per Tooth and MRR 

f = feed per tooth (m) 
w = width of cut (m) 

v (m/s) 

W = rotational rate (rpm) 

Consider the workpiece moving into the cutter at rate “v”. In travel time t’ the 
feed is v t’. The time for one rotation is t’ = 1/W. The travel for one tooth is 

1/4W. Hence the feed per tooth is f = v/4W. In general, a cutter may have “N” 

teeth, so the feed per tooth is 

    f = v / NW 
The material removal rate (MRR) is, 

    MRR = v w d 

where “d” is the depth of the tool into the workpiece. 

Top view of face milling 
With 4 tooth cutter 

Side view 

d 

Force ≈ f d u 



Ex) Face milling of Al Alloy 

w 

d D 

vw 

N = 4 (number of teeth) 
D = 2” (cutter diameter) 

Let w = 1” (width of cut), d=0.1” (depth of cut) 
f = 0.007” (feed per tooth),  
vs = 2500 ft/min (surface speed; depends on 
cutting tool material; here, we must have a 
coated tool such as TiN or PCD)  

The rotational rate for the spindle is 
   W = vs / pD  = 4775 rpm 

Now, we can calculate vw, workpiece velocity, 
   f = vw / N W => vw= 134 [in/min] 
 
Material removal rate, MRR = vw*w*d = 13.4 [in3/min]  
Power requirement, P = us*MRR = 5.36 [hp] 
Cutting force / tooth, F ~ us*d*f = 111 [lbf] 

 us from Table 21.2 (20.2 ed 4); Note 1 [hp min/in3] = 3.96*105 [psi] 





Ex) Turning a stainless steel bar 

f 

D=1” 

d 

Tool 

Recommended feed = 0.006” (Table 23.4 (22.4)) 
Recommended surface speed = 1000 ft/min 
 
W =    1000 ft/min     = 3820 rpm 

  p*1” * 1ft/12” 
 
 
 

Material removal rate, MRR = 0.1*0.006*(p*1*3820) = 7.2 [in3/min]  

Power requirement, P = us*MRR = 1.9*7.2 = 13.7 [hp] 

Cutting force / tooth, F ~ us*d*f = (1.9*3.96*105)*(0.1*0.006)  

           = 450 [lbf] 

 

 us from Table 21.2 (20.2 ed 4); Note 1 [hp min/in3] = 3.96*105 [psi] 

Let d = 0.1” 

 





Temperature Rise in Cutting 

Adiabatic Temperature Rise:  
 r c DT = uS 
 
Note :  uS ~ H, Hardness 
 DTadiabatic ≈ ½ Tmelt (Al & Steel) 
 
Interface Temperature:  
 
 DT = 0.4 (H / r c)(v f / )0.33 
 
 v = cutting speed 
 f = feed 
  = thermal diffusivity of workpiece 
 Note v f /  = Pe = convection/conduction 

Typical temperature distribution 
in the cutting zone 

* Source: Kalpakjian, and Schmidt 5th ed 

* 

* Reference: N. Cook, “Material Removal Processes” 



Effect of temperature on 

Hardness 



Tool Life 

Frederick Winslow Taylor 
 -1856 to 1915 
•Tool life 
•Scientific management 
 
 
VT n  C

T 
C

V








1
n

Note C = V for T = 1 min. 
range for n is 0.08 to 0.7 

See text Ch 21 



Optimum cutting speed range 



Effect on Productivity 

100 to 0.5 in 110 years  ~ 5%/yr 



Limits to MRR in Machining 
 Spindle Power – for rigid, well supported parts 

 Cutting Force – may distort part, break delicate 
tools 

 Vibration and Chatter – lack of sufficient rigidity in 
the machine, workpiece and cutting tool may result 
in self-excited vibration 

 Heat – heat build-up may produce poor surface 
finish, excessive work hardening, “welding”; can be 
reduced with cutting fluid 

 Economics - tool changes 

 

See Video on Rate Limits In Machining 



Typical Material Removal 

Rate 
10-4 10-3 10-2 10-1 1 10 102 

EBM1 EDM1,2 

Grinding3 

Machining 

Creep Feed2 
Grinding 

LASER3 

Chem. Milling2 

[cm3/sec] 

25A, 6um RMS1 

Rough milling 
of Al > 35hp 

1m X 1m area Note: 1cm3/sec = 3.67 in3/min 

* References: 1. Advanced Methods of Machining, J.A.McGeough, Chapman and Hall, 1988 

                      2. Manufacturing Engineering and Technology, S. Kalpakjian, Addison-Wesley, 1992 

                      3. Laser Machining, G. Chryssolouris, Springer-Verlag, 1991 



High speed Machining and Assembly 

• High Speed Machined aluminum parts are replacing built-up 

parts made by forming and assembly (riveting) in the aerospace 

industry. The part below was machined on a 5-axis Makino 

(A77) at Boeing using a 8-15k rpm spindle speed, and a feed of 

240 ipm vs 60 ipm conventional machining. This part replaces a 

build up of 25 parts. A similar example exists for the F/A-18 

bulkhead (Boeing, St. Louis) going from 90 pieces (sheetmetal 

build-up) to 1 piece. High speed machining is able to cut walls to 

0.020” (0.51mm) without distortion. Part can be fixtured using 

“window frame” type fixture. 

MRR = f d * N W w 

 



 
 

High Speed Machining 

 

 
https://www.youtube.com/watch?v=3YzAl29Ag78 

https://www.youtube.com/watch?v=3YzAl29Ag78


Machine tool configurations 

•  Machine tool 

 number of axes, spindles, serial and parallel 
configurations 

•  Cutter geometry 

 Form tool, cutter radius, inserts, tool changers  

•  Software 

 flexibility, geometrical compensation, “look ahead” 
dynamics compensation 
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* Source: Kalpakjian, “Manufacturing Engineering and Technology” 



Institut für Werkzeugmaschinen und Fertigung 
Hexaglide from Zurich (ETH)  

www.iwf.mavt.ethz.ch/ 

http://www.iwf.mavt.ethz.ch/




* Source: Kalpakjian, “Manufacturing Engineering and Technology” 



Fast Tool Servo 
http://web.mit.edu/pmc/www/index.html 

Ref D. Trumper 





Readings 

 Kalpakjian & Schmid Machining 

chapters are extensive: Ch 21-27 

 Design for Machining handout 

 


