Lecture 8

Impedance

Copyright © 2015 by Mark Horowitz

Roadmap

In the last lecture we showed how we can represent a voltage waveform that changes in time another way - as a sum of tones (sinewaves). This representation contains the same information, just stored in a different way. These two representations are called transforms of each other.

This lecture will show you why this alternative representation is so useful. If you can represent an input as a sum of sinewaves, then it is very easy to compute the output of a circuit with resistors and capacitors. To show how this is done, we will introduce the concept of impedance, which is a generalization of resistance. Using impedance we can then estimate how the gain of circuit can change with frequency, creating filters, and how the response of these filters are graphed in a Bode plot.

Learning Objectives

- Learn what a dB is, and how it is used in voltage measurement
- Logarithmic measure of gain $\left(\mathrm{V}_{1} / \mathrm{V}_{0}\right)$
- 10 dB is a factor of 10 in power, 20 dB is a factor of 100
- Understand what a Bode plot is, and how to use it
- It plots of circuit's gain in dB vs. log of the frequency
- Impedance is the relationship between voltage and current
- For a sinusoidal input
- $\mathrm{Z}=\mathrm{V} / \mathrm{i}$, so for a capacitor $Z=\frac{1}{2 \pi F C}$

CAPACITORS

Capacitors

- Rather than relating i and V
$-Q=C V$
- Q in Coulombs
- V in Volts
- C in Farads
- Charge neutral
- +Q on one lead
- -Q on the other lead

iV for a Capacitor

- How do we relate I and V though?
- $\mathrm{Q}=\mathrm{CV}$
- $\mathrm{I}=\mathrm{dQ} / \mathrm{dt}$
$-d Q / d t=d(C V) / d t$
- $\mathrm{I}=\mathrm{CdV} / \mathrm{dt}$
- Current = Rate of Voltage Change * Capacitance
- If current is small, voltage changes a little bit
- If current is large, voltage changes a lot

Capacitor Energy (Charging) - RC Circuit

- Assume $\mathrm{Vc}=0$ at $\mathrm{t}=0$
- At $t=0$, switch flips up
- Plot Vc vs t

Capacitor Energy (Discharging) - RC Circuit

- Assume $\mathrm{Vc}=5 \mathrm{~V}$ at $\mathrm{t}=0$
- At $t=0$, switch flips down
- Plot Vc vs t

Key Ideas From The Last Lecture - RC Circuits

- When the input to the inverter is low, the output will be at V_{dd}
- Right after the input rises, here is the circuit
- Want to find the capacitor voltage verses
- Just write the nodal equations:
- We just have one node voltage, $\mathrm{V}_{\text {Out }}$
$-\mathrm{i}_{\text {RES }}=\mathrm{V}_{\text {out }} / \mathrm{R}_{1}$
$-\mathrm{i}_{\mathrm{CAP}}=\mathrm{CdV}_{\text {out }} / \mathrm{dt}$

- From KCL, the sum of the currents must be zero, so

$$
\frac{d V_{\text {out }}}{d t}=-\frac{V_{\text {out }}}{R_{1} C}
$$

Key Ideas From The Last Lecture - RC Circuits

In capacitor circuits, voltages change "slowly", while currents can be instantaneous.

PREVIOUSLY IN E40M

IMPEDANCE

Impedance

- Ratio of the sine wave voltage across the device
- To the sine wave current through the device
- For resistors
- This is just the resistance, and doesn't depend on freq.
- For capacitors
- This is a well defined quantity

$$
\mathrm{Z}=\frac{1}{2 \pi F C}
$$

- Which depends on the frequency of the sine wave

What happens when we put sine waves into a Capacitor?

- $\operatorname{Vin}=\sin (2 \pi f t)$
- $\quad \mathrm{Ic}=\mathrm{C} d V \mathrm{in} / \mathrm{dt}$
- \quad Ic $=C 2 \pi f \cos (2 \pi f t)$
- $|Z|=V i n / l c=1 /(2 \pi f C)$

But How To Solve This Circuit?

- The input voltage is sound from your computer.
- Why do we need this circuit?

Superposition to the Rescue

- We know that sound can be represented by
- A sum of sinewaves
- We also know that R, C are linear elements
- So superposition holds
- Superposition says
- The output is the sum of the response from each source
- So the output from a sound waveform
- Is the sum of the outputs generated from each sinewave

Sinewave Driven Circuits

- All voltages and currents are sinusoidal
- So we really just need to figure out
- What is the amplitude of the resulting sinewave
- And sometimes we need the phase shift too (but not always)
- These values don't change with time
- This problem is very similar to solving for DC voltages/currents
- In fact can solve it exactly the same way ...

RC Circuit Analysis Using Impedance

- The circuit becomes just a voltage divider, and we can analyze it the same way we have analyzed resistor only circuits.
- That's the power of using impedance!

Analyzing RC Circuits Using Impedance

$$
\mathrm{Z}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{FC}} \quad \mathrm{Z}_{\mathrm{R}}=\mathrm{R}
$$

- If the circuit had two resistors then we would know how to analyze it

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{R_{2}}{R_{1}+R_{2}}
$$

- What if we do the same thing but use impedances

Analyzing RC Circuits Using Impedance

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{\mathrm{R}}{\mathrm{R}+\frac{1}{2 \pi \mathrm{FC}}}=\frac{2 \pi \mathrm{FRC}}{1+2 \pi \mathrm{FRC}}
$$

- At low frequencies, $(F \approx 0), \mathrm{V}_{\text {out }}=0$ which means that low frequencies are not passed to the output. The capacitor blocks them.
- Recall that we used this idea earlier to calculate the DC voltage at the output.
- At high frequencies (F large), $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }}$

