Lecture 8

Impedance

Copyright © 2015 by Mark Horowitz

Roadmap

In the last lecture we showed how we can represent a voltage waveform that changes in time another way – as a sum of tones (sinewaves). This representation contains the same information, just stored in a different way. These two representations are called transforms of each other.

This lecture will show you why this alternative representation is so useful. If you can represent an input as a sum of sinewaves, then it is very easy to compute the output of a circuit with resistors and capacitors. To show how this is done, we will introduce the concept of **impedance**, which is a generalization of resistance. Using impedance we can then estimate how the gain of circuit can change with frequency, creating **filters**, and how the response of these filters are graphed in a **Bode plot**.

Learning Objectives

- •
- Learn what a dB is, and how it is used in voltage measurement
 - Logarithmic measure of gain (V_1/V_0)
 - 10 dB is a factor of 10 in power, 20 dB is a factor of 100
- Understand what a Bode plot is, and how to use it
 - It plots of circuit's gain in dB vs. log of the frequency
- Impedance is the relationship between voltage and current
 - For a sinusoidal input

- Z= V/i, so for a capacitor
$$Z = \frac{1}{2\pi FC}$$

CAPACITORS

Capacitors

- Rather than relating i and V
 - Q = CV
 - Q in Coulombs
 - V in Volts
 - C in Farads
- Charge neutral
 - +Q on one lead
 - -Q on the other lead

iV for a Capacitor

- How do we relate I and V though?
 - Q=CV
 - I = dQ/dt
 - dQ/dt = d(CV)/dt
- I = C dV/dt
- Current = Rate of Voltage Change * Capacitance
 - If current is small, voltage changes a little bit
 - If current is large, voltage changes a lot

Capacitor Energy (Charging) – RC Circuit

- Assume Vc=0 at t=0
- At t=0, switch flips up
- Plot Vc vs t

Capacitor Energy (Discharging) – RC Circuit

- Assume Vc=5V at t=0
- At t=0, switch flips down
- Plot Vc vs t

Key Ideas From The Last Lecture – RC Circuits

- When the input to the inverter is low, the output will be at V_{dd}
 - Right after the input rises, here is the circuit
- Want to find the capacitor voltage verses
- Just write the nodal equations:
 - We just have one node voltage, V_{OUT}

$$-$$
 i_{RES} = V_{out}/R₁

 $- i_{CAP} = CdV_{out}/dt$

• From KCL, the sum of the currents must be zero, so

$$\frac{\mathrm{d}V_{\mathrm{out}}}{\mathrm{d}t} = -\frac{V_{\mathrm{out}}}{R_1 C}$$

Key Ideas From The Last Lecture – RC Circuits

M. Horowitz

PREVIOUSLY IN E40M

IMPEDANCE

Impedance

- •
- Ratio of the sine wave voltage across the device
 - To the sine wave current through the device
- For resistors
 - This is just the resistance, and doesn't depend on freq.
- For capacitors
 - This is a well defined quantity

$$\mathsf{Z} = \frac{1}{2\pi F C}$$

• Which depends on the frequency of the sine wave

What happens when we put sine waves into a Capacitor?

- Vin = sin($2\pi f t$)
- Ic = C dVin/dt
- Ic = C 2πf cos(2πf t)
- $|Z| = Vin/Ic = 1/(2\pi f C)$

But How To Solve This Circuit?

- The input voltage is sound from your computer.
- Why do we need this circuit?

Superposition to the Rescue

- We know that sound can be represented by
 - A sum of sinewaves
- We also know that R, C are linear elements
 - So superposition holds
- Superposition says
 - The output is the sum of the response from each source
- So the output from a sound waveform
 - Is the sum of the outputs generated from each sinewave

Sinewave Driven Circuits

- All voltages and currents are sinusoidal
- So we really just need to figure out
 - What is the amplitude of the resulting sinewave
 - And sometimes we need the phase shift too (but not always)
- These values don't change with time
 - This problem is very similar to solving for DC voltages/currents
- In fact can solve it exactly the same way ...

RC Circuit Analysis Using Impedance

- The circuit becomes just a voltage divider, and we can analyze it the same way we have analyzed resistor only circuits.
 - That's the power of using impedance!

Analyzing RC Circuits Using Impedance

• If the circuit had two resistors then we would know how to analyze it

$$\frac{V_{out}}{V_{in}} = \frac{R_2}{R_1 + R_2}$$

• What if we do the same thing but use impedances

Analyzing RC Circuits Using Impedance

- At low frequencies, (F \approx 0), V_{out} = 0 which means that low frequencies are not passed to the output. The capacitor blocks them.
 - Recall that we used this idea earlier to calculate the DC voltage at the output.
- At high frequencies (F large), $V_{out} = V_{in}$

M. Horowitz